

iii

Deliverable Title

August 2021

WP3 – Data Services and Semantic

Enrichment Layer

D3.1 | MATRYCS-

GOVERNANCE (1
st

technology release)

iii

Disclaimer

The sole responsibility for the content of this publication lies with the authors. It does not necessarily

reflect the opinion of the European Union. Neither the EASME nor the European Commission is

responsible for any use that may be made of the information contained therein.

Copyright Message

This report, if not confidential, is licensed under a Creative Commons Attribution 4.0 International

License (CC BY 4.0); a copy is available here: https://creativecommons.org/licenses/by/4.0/. You are

free to share (copy and redistribute the material in any medium or format) and adapt (remix,

transform, and build upon the material for any purpose, even commercially) under the following terms:

(i) attribution (you must give appropriate credit, provide a link to the license, and indicate if changes

were made; you may do so in any reasonable manner, but not in any way that suggests the licensor

endorses you or your use); (ii) no additional restrictions (you may not apply legal terms or

technological measures that legally restrict others from doing anything the license permits).

The MATRYCS project has received funding from the European Union’s Horizon

2020 research and innovation programme under grant agreement no.101000158

Modular Big Data Applications for Holistic

Energy Services in Buildings

https://creativecommons.org/licenses/by/4.0/

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

iv

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Grant Agreement Number 101000158 Acronym MATRYCS

Full Title Modular Big Data Applications for Holistic Energy Services in Buildings

Topic LC-SC3-B4E-6-2020 | Big data for buildings

Funding scheme H2020- IA: Innovation Action

Start Date October 2020 Duration 36

Project URL www.matrycs.eu

Project Coordinator ENG

Deliverable D3.1 MATRYCS-GOVERNANCE (1st technology release)

Work Package WP3 – Data Services and Semantic Enrichment Layer

Delivery Month (DoA) August 2021 Version 1.0

Actual Delivery Date 31/08/2021

Nature Other Dissemination Level Public

Lead Beneficiary ENG

Authors

Dario Pellegrino [ENG], Marija Borisov [ENG], Leandro Lombardo

[ENG], Francesco Saverio Nucci [ENG], Sofía Mulero [CARTIF], Víctor

Iván Serna [CARTIF], Timotej Gale [COMSENSUS], Tomaž Bračič

[COMSENSUS], Andrej Čampa [COMSENSUS], Zoi Mylona [HOLISTIC],

Panagiotis Kapsalis [NTUA], Daniele Antonucci [EURAC], Zhiyu Pan

[RWTH]

Quality Reviewer(s):
Javier Román [CARTIF], Gema Hernández Moral [CARTIF], Zoi Mylona

[HOLISTIC]

Keywords Data Governance, Data Services, Semantic Enrichment

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

v

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Preface

MATRYCS focuses on addressing emerging challenges in big data management for buildings with an

open holistic solution for Business to Business platforms, able to give a competitive solution to

stakeholders operating in building sector and to open new market opportunities. MATRYCS Modular

Toolbox, will realise a holistic, state-of-the-art AI-empowered framework for decision-support models,

data analytics and visualisations for Digital Building Twins and real-life applications aiming to have

significant impact on the building sector and its lifecycle, as it will have the ability to be utilised in a

wide range of use cases under different perspectives:

 Monitoring and improvement of the energy performance of buildings - MATRYCS-

PERFORMANCE

 Design facilitation and development of building infrastructure - MATRYCS-DESIGN

 Policy making support and policy impact assessment - MATRYCS-POLICY

 De-risking of investments in energy efficiency - MATRYCS-FUND

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

vi

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Who We Are

N

o
Participant Name Short Name

Country

Code
Logo

1 ENGINEERING – INGEGNERIA INFORMATICA SPA ENG IT

2 NATIONAL TECHNICAL UNIVERSITY OF ATHENS NTUA GR

3 FUNDACION CARTIF CARTIF ES

4
RHEINISCH-WESTFAELISCHE TECHNISCHE

HOCHSCHULE AACHEN
RWTH DE

5 ACCADEMIA EUROPEA DI BOLZANO EURAC IT

6 HOLISTIC IKE HOLISTIC GR

7
COMSENSUS, KOMUNIKACIJE IN SENZORIKA,

DOO
COMSENSUS SL

8 BLAGOVNO TRGOVINSKI CENTER DD BTC SL

9
PRZEDSIEBIORSTWO ROBOT

ELEWACYJNYCHFASADA SP ZOO
FASADA PL

10 MIASTO GDYNIA GDYNIA PL

11
COOPERNICO - COOPERATIVA DE

DESENVOLVIMENTO SUSTENTAVEL CRL
COOPERNICO PT

12 ASM TERNI SPA ASM IT

13
VEOLIA SERVICIOS LECAM SOCIEDAD ANONIMA

UNIPERSONAL
VEOLIA ES

14
ICLEI EUROPEAN SECRETARIAT GMBH (ICLEI

EUROPASEKRETARIAT GMBH)
ICLEI DE

15
ENTE PUBLICO REGIONAL DE LA ENERGIA DE

CASTILLA Y LEON
EREN ES

16 VIDES INVESTICIJU FONDS SIA LEIF LV

17
COMITE EUROPEEN DE COORDINATION DE

L'HABITAT SOCIAL AISBL

HOUSING

EUROPE
BE

18 SEVEN, THE ENERGY EFFICIENCY CENTER Z.U. SEVEN CZ

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

vii

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Contents

1 Introduction .. 15

1.1 Purpose of the document ... 15

1.2 Structure of the document ... 15

2 MATRYCS-GOVERNANCE architecture ... 16

2.1 Overall MATRYCS-GOVERNANCE architecture .. 16

2.2 MATRYCS-GOVERNANCE Building Blocks ... 17

2.2.1 Interoperability Service Module .. 17

2.2.2 Data pre-processing and semantic enrichment .. 18

2.2.3 Streaming module... 20

2.2.4 Data Storage .. 20

2.2.5 High Performance Distributed Query Engine... 21

2.2.6 Reasoning Engine .. 22

2.2.7 Trusted Data Sharing (DLT/Blockchain) .. 23

2.2.8 End-to-End Security framework .. 24

3 MATRYCS Data Governance solution ... 26

3.1 Overview Data Governance solution .. 26

3.2 Interoperability Service Module ... 26

3.2.1 Interoperability implementation description ... 26

3.2.2 Interoperability Data Connectors .. 27

3.2.3 Technological components ... 28

3.2.4 Interaction with other Data Governance components ... 34

3.3 Data pre-processing and semantic enrichment ... 35

3.3.1 Data pre-processing and semantic enrichment implementation description 35

3.3.2 Technological components ... 35

3.3.3 Interaction with other Data Governance components ... 37

3.4 Streaming module .. 37

3.4.1 Streaming module implementation description ... 37

3.4.2 Technological components ... 38

3.4.3 Interaction with other Data Governance components ... 42

3.5 Data Storage ... 43

3.5.1 Data Storage implementation description .. 43

3.5.2 Technological components ... 44

3.5.3 Interaction with other Data Governance components ... 46

3.6 Reasoning Engine ... 46

3.6.1 Reasoning Engine implementation description .. 46

3.6.2 Technological components ... 47

3.6.3 Interaction with other Data Governance components ... 49

3.7 High Performance Distributed Query Engine .. 50

3.7.1 High Performance Distributed Query Engine implementation description 50

3.7.2 Technological components ... 50

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

viii

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

3.7.3 Interaction with other Data Governance components ... 53

3.8 Trusted Data Sharing (DLT/Blockchain) ... 53

3.8.1 Trusted Data Sharing implementation description .. 53

3.8.2 Technological components ... 55

3.8.3 Interaction with other Data Governance components ... 58

3.9 End-to-End Security framework ... 58

4 MATRYCS Data Model ... 60

4.1 Vocabularies and Ontologies ... 61

4.1.1 Brick schema .. 61

4.1.2 SAREF ... 67

5 MATRYCS–GOVERNANCE Integration at M11 .. 69

5.1 Case study LSP1 and LSP5 .. 69

5.1.1 Data Acquisition ... 71

5.1.2 Data processing and modelling ... 73

5.1.3 Data Storage and Reasoning Engine ... 79

5.1.4 Data Access Layer .. 84

6 MATRYCS–GOVERNANCE: Final considerations and next steps .. 85

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

ix

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Figures

Figure 1: Big Data Management phases .. 16

Figure 2: MATRYCS-GOVERNANCE Conceptual Architecture ... 17

Figure 3: Interoperability Service Module ... 18

Figure 4: Data Pre-processing Service .. 19

Figure 5: Streaming Module ... 20

Figure 6: Data Storage .. 21

Figure 7: Distributed Query Engine ... 22

Figure 8: Reasoning Engine .. 23

Figure 9: Trusted data sharing ... 24

Figure 10: End-to-End Security Framework .. 25

Figure 11: Overview of the MATRYCS-GOVERNANCE Solution ... 26

Figure 12: Apache NiFi processor groups ... 28

Figure 13: Apache NiFi Architecture .. 29

Figure 14: Apache NiFi Cluster .. 29

Figure 15: Nginx Load-balancing Reverse Proxy .. 30

Figure 16: Interoperability Service Module ... 31

Figure 17: Apache Kafka Architecture ... 38

Figure 18: Kafka with multiple partitions for the topic and two producers 39

Figure 19: Interaction of the Streaming Module with other components .. 42

Figure 20- NiFi PublishKafka processor configuration ... 42

Figure 21: Confluent Kafka package in Jupyter environment .. 43

Figure 22: Reasoning Engine Solution and sub-modules ... 47

Figure 23: Reasoning Engine interaction with Data Streaming Module .. 50

Figure 24: Blockchain data structure ... 53

Figure 25: Blockchain network ... 54

Figure 26: Trusted data sharing flow ... 54

Figure 27: IoT Gateway ... 57

Figure 28: Blockchain platform architecture... 58

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

x

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Figure 29: Example of Brick Schema .. 66

Figure 30: Overview of the SAREF ontology ... 67

Figure 31: General overview of the top levels of the SAREF4BLDG ... 68

Figure 32: LSP1 and LSP5 data acquisition ... 71

Figure 33: LSP1 data connector .. 72

Figure 34: LSP5 data connector .. 73

Figure 35: LSP01 BTC data model .. 77

Figure 36: LSP05 Coopernico data model ... 77

Figure 37: Stored LSP1 data on GraphDB ... 82

Figure 38: LSP5 data stored in the GraphDB .. 83

Tables

Table 1: NiFi node Docker Compose file ... 32

Table 2: NGINX Docker Compose file ... 33

Table 3: NGINX configuration file .. 34

Table 4: Comparison data model with ontology .. 36

Table 5: Docker-compose file for Apache Kafka ... 40

Table 6: Data storage microservice Dockerfile .. 45

Table 7: Docker-compose file for ScyllaDB ... 45

Table 8: Example of Reasoning Engine REST API ... 48

Table 9: Example of Reasoning Engine LEIF Recommendation Service ... 48

Table 10: Docker-compose file for Reasoning Engine ... 48

Table 11: Dockerfile for Presto .. 51

Table 12: Docker-compose file for Presto ... 52

Table 13: Metadata schema as resulting of review process of existing applications 62

Table 14: Main core concepts of building ontology ... 63

Table 15: Relationship and definition for brick and brick plus schema ... 66

Table 16: DATASET_ORDER_DICT in python script .. 78

Table 17: Data Storage Golang Kafka consumer78 ... 79

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

xi

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Table 18: Staging area file for LSP1 ... 80

Table 19: Staging area file for LSP5 ... 80

Table 20: LSP1 Reasoning Engine payload ... 80

Table 21: LSP1 import script to Reasoning Engine .. 81

Table 22: LSP5 Reasoning Engine payload ... 82

Table 23: LSP5 import script to Reasoning Engine .. 83

Table 24: Example Presto query submission .. 84

Table 25: Reasoning Engine Rest API .. 84

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

xii

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Abbreviation and Acronyms

Acronym Description

ADE Application Domain Extension

AHU Air Handling Unit

AI Artificial Intelligence

API Application Programming Interface

BACs Building Automation and Control systems

B2B Business-to-Business

BDVC Big Data Value Chain

BEDES Building Energy Data Exchange Specifications

BEMS Building Energy Management System

BIM Building Information Modelling

BMS Building Management System

BOT Building Topology/Ontology

CLI Command Line Interface

CO2 Carbon dioxide

D Deliverable

DB Database

DEB Debian Package

DL Deep Learning

DLT Distributed Ledger Technology

DH District Heating

DHN District Heating Network

DSO Distribution System Operator

DSM Data Storage Management

ECM Energy Conservative Measure

EEM Energy Efficiency Measure

EE Energy Efficiency

EM-KPI ?????

EMS Energy Management System

EP Energy Performance

EPBD Energy Performance of Buildings Directive

EPC Energy Performance Certificate

ESCO Energy Services Company

ETL Extract, Transform, Load

EU European Union

EV Electric Vehicle

EVM Ethereum Virtual Machine

gbXML Green Building eXtensible Markup Language

GDPR General Data Protection Regulation

GUI Graphical User Interface

HTO Haystack Tagging Ontology

HTTPS Hypertext Transfer Protocol Secure

ICT Information and Communication Technologies

IEQ Indoor Environmental Quality

IFC Industry Foundation Classes data model

IoT Internet of Things

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

xiii

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

IP Internet Protocol

JSON JavaScript Object Notation

KM4City Knowledge Model for City

KPI Key Performance Indicator

LSP Large Scale Pilot

M&V Measurement and Verification

MQTT Message Queue Telemetry Transport

ML Machine Learning

NDJSON Newline Delimited Java Script Object Notation

NGSI Next Generation Service Interfaces

NGSI-LD Next Generation Service Interfaces Linked Data

NIS Network Information Security

NoSQL Not Only Structured Query Language

obXML Occupant Behavior XML Schema

oneDM One Data Model

OP Occupancy Profile

OPM Ontology of Property Management

OWL Web Ontology Language

O&M Operations & Maintenance

PMB Project Management Board

PV Photovoltaic

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RECs Renewable Energy Communities

RES Renewable Energy Sources

REST Representational State Transfer

RPM Red Hat Package Manager

SAREF Smart Applications REFerence

SECAP Sustainable Energy and Climate Action Plan

SFTP SSH File Transfer Protocol

SME Small and Medium-sized Enterprises

SHACL Shapes Constraint Language

SOSA Sensor, Observation, Sample and Actuator

SQL Structured Query Language

SSN Semantic Sensor Network

SSH Secure Shell

SSL Secure Sockets Layer

TBM Technical Building Management

TLS Transport Layer Security

TTL Turtle file

URI Uniform Resource Identifier

URL Uniform Resource Locator

VBIS Virtual Building Information Systems

WMS Warehouse Management System

WP Work Package

YAML Ain't Markup Language

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

xiv

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Executive Summary

The D3.1 – MATRYCS-GOVERNANCE (1
st
 technology release) provides a description of the

implementation of the 1
st
 technology release for Data Services and Semantic Enrichment layer

(MATRYCS-GOVERNANCE) according with the MATRYCS high-level reference architecture defined in

the deliverable D2.3 MATRYCS Reference Architecture for Buildings Data v1.0.

This 1
st
 technology release is mainly focused to the preliminary valuation of the envisaged technologies

solutions for the MATRYCS-GOVERNANCE layer with limited data and in a constraint scenario and it

reports the activities done until M11 in the WP3 Data services & Semantic Enrichment Layer (MATRYCS-

GOVERNANCE) and in particular related to tasks T3.1 DLT & Smart Contracts for B2B Cross-stakeholder

Trusted Off-chain Data Sharing and Re-use, T3.2 Data Interoperability, T3.3 Data Curation,

Anonymisation, Access Policy and Semantic Enrichment, T3.4 Data Storage and High Performance,

Distributed Query Engine, T3.5 Reasoning Engine and T3.6 End-to-end security framework.

The work reported in D3.1 - MATRYCS-GOVERNANCE (1
st
 technology release) provides an overview of

the conceptual architecture of the MATRYCS-GOVERNANCE layer with a general description of its

building blocks. For each building block, technological solutions have been identified and evaluated

including information on implementation methods and interactions between the different MATRYCS-

GOVERNANCE modules. A preliminary study of the MATRYCS Common Data Model was started,

considering also reference vocabularies and ontologies. Finally, the MATRYCS-GOVERNANCE data flow

processes were demonstrated for two large-scale pilots (LSPs), namely, for LSP1 (BTC) and LSP5

(Coopernico).

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

15

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

1 Introduction

1.1 Purpose of the document

The purpose of D3.1 “MATRYCS-GOVERNANCE (1
st
 technology release)” is to report the implementation

of the 1
st
 technology release of the Data services & Semantic Enrichment Layer (MATRYCS-

GOVERNANCE). In this regard, this deliverable reports the activities carried out and the outcomes

obtained in WP3 Data services & Semantic Enrichment Layer (MATRYCS-GOVERNANCE) and, in

particular, related to tasks T3.1 DLT & Smart Contracts for B2B Cross-stakeholder Trusted Off-chain Data

Sharing and Re-use, T3.2 Data Interoperability, T3.3 Data Curation, Anonymisation, Access Policy and

Semantic Enrichment, T3.4 Data Storage and High Performance, Distributed Query Engine, T3.5

Reasoning Engine and T3.6 End-to-end security framework.

The work done so far is focused to the preliminary valuation of the envisaged technologies solutions

for the MATRYCS-GOVERNANCE layer highlighting the conceptual architectures of the different

MATRYCS-GOVERNANCE components, the technological solutions, the interaction between modules,

implementation aspects and deployment approaches.

1.2 Structure of the document

The D3.1 “MATRYCS-GOVERNANCE (1
st
 technology release)” is organized as follows:

 In section 1, the purpose of the document and related structure is presented.

 In section 2, an overview of the conceptual architecture of MATRYCS-GOVERNANCE

layer with a general description of its building blocks is presented.

 In section 3, the MATRYCS-GOVERNANCE layer solution is provided. An explanation of

the adopted solution for each module is given focusing on the implementation

aspects, technological solutions, deployment approaches and interactions between

modules of the MATRYCS-GOVERNANCE layer.

 In section 4, preliminary work done to define the MATRYCS Common Data Model.

 In section 5, the MATRYCS-GOVERNANCE data pipeline is demonstrated for two case

studies, namely: LSP1 (BTC) and LSP5 (Coopernico).

 Finally, section 6 outlines the upcoming activities to be undertaken to proceed with the

implementation of the 2
nd

 technology release of the MATRYCS-GOVERNANCE layer.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

16

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

2 MATRYCS-GOVERNANCE architecture

2.1 Overall MATRYCS-GOVERNANCE architecture

The main objective of the data services and semantic enrichment (MATRYCS-GOVERNANCE) layer is to

provide the necessary middleware to act as a mediator between MATRYCS Data Providers and the

MATRYCS data users (Analytics tools and services).

The MATRYCS-GOVERNANCE, using a holistic approach, will consider different domain and non-

domain data such as building data, energy data, sensors data, energy uses data (heating, lighting,

cooling, air conditioning, ventilation), weather data, etc..

According to a Big Data Value Chain approach, MATRYCS-GOVERNANCE has been designed

identifying the key high-level activities to guarantees the integration, pre-processing, semantic

annotation, storing and querying of the heterogeneous data handled in the MATRYCS project.

Figure 1: Big Data Management phases

Data acquisition step is guaranteed through an Interoperability Service Module which will be in

charge of facilitating data integration of heterogeneous data sources and/or platforms belonging to

different MATRYCS actors. A Streaming module will also manage the data streaming for the MATRYCS

PROCESSING layer for the in-memory processing of the high latency near real time data.

Data Curation step is performed through the Pre-processing & Semantic Enrichment Module which is

in charge data pre-processing activities such as cleansing, curation, anonymisation and semantic

annotation. This module is also in charge for data modelling activities by using pre-existing

vocabularies and ontologies to define the MATRYCS Common Data Model.

Data storage phase is covered by two different modules: the High-Performance Query Engine and the

Reasoning engine. The High-Performance Query Engine is built on top of a NoSQL DB to perform

complex queries in very efficient and high scalable way. The Reasoning Engine based on Graph

Database technology is used to persist semantic datasets and any RDF information produced by the

Pre-processing & Semantic Enrichment Module. Both modules expose intelligent querying systems

and APIs to be used by the upper MATRYCS-PROCESSING and MATRYCS-ANALYTICS layers.

Finally, a security layer for the whole MATRYCS platform and then also for the MATRYCS-

Data Acquisition

• Structured data

• Unstructured data

• Real-time data

• Data streams

• IoT devices

• Sensors networks

• Building Management Systems

• Protocols

• Interoperability

Data Curation

• Data pre-processing

• Noise reduction

• Data Anonymazition

• Data modelling

• Semantic annotation

Data Storage

• NoSQL DB

• Distributed File

System

• High Performance

Query Engine

• APIs

• Security

• Scalability and

performance

• Consinstency,

Availability, Partition-

tolerance

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

17

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

GOVERNANCE layer, is guaranteed through the End-To-End Security Framework reported in the

Deliverable D3.2
1
.

In the Figure 2 the overall MATRYCS-GOVERNANCE conceptual architecture.

Figure 2: MATRYCS-GOVERNANCE Conceptual Architecture

2.2 MATRYCS-GOVERNANCE Building Blocks

2.2.1 Interoperability Service Module

The Interoperability Service Module (Figure 3) will be in charge of integrating heterogeneous data from

different sources and/or platforms belonging to different MATRYCS Data Providers in the energy and

non-energy ecosystem such as Smart Meters, Sensors, IoT devices, Building Management Systems

(BMSs), Energy Performance Contracts/Certificates, legacy systems. This component will be based on

micro-services (data connectors) to handle the different data sources provided with different data

format and different communication protocols (Rest APIs, SFTP, IoT protocols, Sensor Network)

providing also interfaces to other third-party energy and non-energy datasets/platforms willing to

federate/integrate with MATRYCS, in order to enable incremental deployment of the MATRYCS Data

Hub. The Interoperability Service Module will also be able to handle open file format, such as .IFC (the

1
 Deliverable 3.2: End-to-End Security Framework

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

18

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Industry Foundation Classes data model
2
) to facilitate the interoperability for BIM (Building Information

Model
3
) data sharing.

This module will also be able to cover data exchange mechanisms at EDGE level, with the aim to offer

both local computational power and storage capacity to services and functions that may that need

ultra-low latency, as well as local processing without leveraging on core cloud remote services.

Figure 3: Interoperability Service Module

2.2.2 Data pre-processing and semantic enrichment

The main goal of Data pre-processing service (Figure 4) is to provide optimal data, which will be

processed by the MATRYCS model development and training services. After receiving the datasets

from the Interoperability module, it should go through a whole data pre-processing pipeline, which

contains the anonymization, curation, harmonization transformation, and data semantic enrichment.

Anonymization has been defined as a “process by which personal data is irreversibly altered in such a

way that a data subject can no longer be identified directly or indirectly, either by the data controller

alone or in collaboration with any other party”
4
. The functionality of anonymization consists of two

parts: personal data detection and personal data protection.

The data curation covers all the processes for maintenance, management, and control data, which

include restricting, predefined values substitution, reformatting of field, outliers’ detection, data

2
 https://www.ifcwiki.org/index.php?title=IFC_Wiki

3
 https://en.wikipedia.org/wiki/Building_information_modeling

4
 ISO 25237:2017 Health informatics -- Pseudonymization. ISO. 2017. p. 7.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

19

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

inconsistencies handling, and noise reduction.

The harmonization transformation is defined with the objective to integrate data from various

sources. In order to overcome the heterogeneity of data, the data is restructured according to the

common data model. The common data model facilitates to data interoperability based on a common

set of terms concepts and relations across different data sources. In order to build the common data

model, different open data models like FIWARE Smart Data Model
5
, SAREF

6
, BRICK SCHEMA

7
 are

reused.

The data semantic enrichment main goal is to develop a semantic module for cross-platform, cross-

domain data-information-knowledge interoperability. The well-established vocabularies related to the

building domain should be covered. The exogenous context-based data like weather, geographical, or

energy networks related data is required to enrich the semantic meaning of pilot data.

Figure 4: Data Pre-processing Service

5
 https://www.fiware.org/developers/data-models/

6
 https://saref.etsi.org/

7
 https://brickschema.org

https://saref.etsi.org/

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

20

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

2.2.3 Streaming module

The Data Streaming Module (Figure 5) manages dynamically the frequency rate of the data streaming

allowing re-routing the data to the different MATRYCS-GOVERNANCE services for the subsequent in-

memory processing of the high latency near real time data.

Figure 5: Streaming Module

2.2.4 Data Storage

The Data Storage module (Figure 6) enables local storage of datasets at the edge and in the cloud. It

focuses on providing means for indexing and efficient data querying with respect to high availability

and scalability.

Data storage, as one of the steps in the data pipeline, is one of the crucial building blocks that

provides data persistence and its availability for further modification and usage. To this end, the Data

Storage will be divided into three parts:

 Temporary Storage (also Staging Area): The purpose of the Temporary Storage is to

keep recent data readily available for a short time period before being deleted or

written to persistent storage. Any data processing must be carried out inside the

predefined time window related to persistence settings.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

21

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

 Structured/Semi-structured Data Storage: This storage will provide access to

transformed data for further analytical purposes.

 Networked/Cloud File storage: This storage will provide data persistence and a cost-

effective storage for longer retentions.

Figure 6: Data Storage

2.2.5 High Performance Distributed Query Engine

The High-Performance Distributed Query Engine (Figure 7) is built on top of Data Storage, providing a

distributed query execution engine that enables high-performance data retrieval and processing to the

upper layers of MATRYCS-GOVERNANCE (i.e., services, AI). In addition and in order to utilize NoSQL-

oriented approaches, the engine will enforce data privacy and enable minimal network usage by

reducing the data footprint where possible. Whereas the Distributed Query Engine will enable running

complex interactive analytic queries on big data, real-time constraints will be considered.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

22

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Figure 7: Distributed Query Engine

2.2.6 Reasoning Engine

The Reasoning Engine (Figure 8) is a mechanism that will provide intelligent querying, insights and

search capabilities by leveraging the available knowledge for the Digital Twin and the building

analytics services. Furthermore, it will provide functionalities for adding more data to the existing

knowledge base. The Reasoning Engine module is capable of consuming data that are produced to

Kafka topics from the Streaming module. These data could be in both JSON
8
 and RDF

9
 formats and

when received they are persisted to Reasoning Engine’s graph database. The graph database that is

used is a powerful inference engine that enables graph functionalities over entities and connections for

extracting new insights and patterns from datasets.

8
 https://www.json.org/json-en.html

9
 https://www.w3.org/RDF/

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

23

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Figure 8: Reasoning Engine

2.2.7 Trusted Data Sharing (DLT/Blockchain)

The Trusted Data Sharing module is dedicated to use the DLT/Blockchain technology to ensure an

integrity and trustiness of the data shared in MATRYCS and include in the MATRYCS Data Storage, as

indicated in the Figure 9. The primary purpose of the blockchain technologies, used in this module is to

remove the need for intermediaries and replace them with a distributed network of digital users who

work in partnership to verify transactions and safeguard the integrity of the ledger. Use of blockchain

in the data sharing model of MATRYCS have these main key advantages:

 Traceability and data storage: decentralised and distributed system that becomes a

secure way to track changes in information and data over time.

 Trust of data: the creation of trust among untrusted participants and among the other

providing the possibility to maintain data trustiness during time.

 Peer-to-peer transactions: the absence of intermediaries promotes a more

transparency data sharing.

In addition, we should note that the Blockchain is a distributed ledger, based on a shared and

distributed database, containing a log of transactions in chronological order. Transactions are grouped

into blocks and chained through cryptographic hashes into an ongoing chain of hash-based proof-of-

work, forming a record that cannot be changed without redoing the proof-of-work.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

24

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Figure 9: Trusted data sharing

2.2.8 End-to-End Security framework

The End-to-End Security Framework (Figure 10) is the security layer for the whole MATRYCS platform

(MATRYCS-GOVERNANCE, MATRYCS-PROCESSING, MATRYCS-ANALYTICS) focusing on the holistic

design and implementation of the following aspects:

 Privacy.

 Anonymization.

 Authentication, authorization, auditing.

 Encryption.

 Software vulnerabilities/flaws detection and mitigation.

The End-to-End Security Framework will provide high-level security and fine-grained access control

over all MATRYCS resources (i.e., data, services, end-user applications, etc.) in addition to encrypted

communication between the resources. In this way, the platform and information will be kept safe, thus

enhancing the trustfulness of the system. Appropriate mechanisms for maintaining and reinforcing

legal/security policies will be employed. In relation to Data Semantic Enrichment, High Performance

Distributed Query Engine and Data Storage, the End-to-End Security Framework will ensure that

transferred data conforms to processing and security constraints, focusing on data encryption (at rest

or in transit) and anonymization.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

25

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

In the context of the MATRYCS project, the End-to-End Security Framework encompasses and relates

to several entities; these entities are associated with infrastructure/assets (e.g., servers), services

focusing on artificial intelligence, machine learning and big data, MATRYCS end-users, and data that

are generated and shared.

Figure 10: End-to-End Security Framework

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

26

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

3 MATRYCS Data Governance solution

3.1 Overview Data Governance solution

Figure 11 shows an overview of the 1
st
 technology release of the MATRYCS-GOVERNANCE layer

implementation with the envisaged technological solutions.

Figure 11: Overview of the MATRYCS-GOVERNANCE Solution

3.2 Interoperability Service Module

3.2.1 Interoperability implementation description

The main technology used for the implementation of the Interoperability Service Module is Apache

NiFi
10

, an open-source tool under the Apache License 2.0, which supports powerful and scalable

directed graphs of data routing, transformation, and system mediation logic with the aim to automate

modern dataflow in the era of the Internet of Things and Big Data paradigms.

In the context of the MATRYCS project, a cluster of three NiFi instances has been set up to ensure data

10

 https://nifi.apache.org/

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

27

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

exchange of large volumes and varieties of both real-time and historical data made available by the

MATRYCS data providers (i.e. Smart Meters, Sensors, IoT devices, Building Management Systems,

Energy Performance Contracts/Certificates, legacy systems). The ability of Apache NIFI to work with

different data sources, APIs, databases, services and SFTP servers makes it the right tool to ensure data

exchange and interoperability of the heterogeneous data to be managed in the MATRYCS project.

Apache NiFi has been chosen as “…NiFi was built to automate the flow of data between systems…”;

therefore, within the context of Apache NiFi, the term dataflow is used to mean the automated and

managed flow of information between systems. In the MATRYCS project context, different NiFi

processors, the main building blocks in Apache NiFi processing, have been configured to create

specific data connectors with the different datasets provided with different communication interfaces.

Data connector integrations can easily provide a solution to transform data into meaningful

information and provide a building block for generating valuable insights. This segmented approach to

data management will no longer cause disruption in the analysis, but a holistic overview that will

enable to disrupt data silos, poor communication, and quality of insights.

Furthermore, Apache MiNifi component
11

, a sub-project of Apache NiFi, is used to fully realise the

most modern distributed computing paradigm extending the cloud to the edge, by offering both local

computational power and storage capacity to services and functions that may need ultra-low latency,

as well as local processing without leveraging on core cloud remote services. In the MATRYCS project

context, the MiNiFi component will be configured at the building edge-level to cover data exchange

mechanisms at the EDGE level.

The Interoperability Service module also includes an SFTP server for MATRYCS data providers who

cannot provide direct access to APIs, IoT devices, Databases, or their legacy systems to share their

datasets.

Nginx
12

 is used as a reverse proxy. It is one of the servers with the best performance characteristics. Its

modular architecture, fault tolerance, support for HTTP/2
13

, load balancing, etc. make it an obvious

choice to be implemented in the MATRYCS project.

Finally, raw data integrated into the MATRYCS Governance by the Interoperability Service Module is

stored in a shared file system to be processed by the “Data pre-processing and semantic enrichment”

described in the section 3.3.

3.2.2 Interoperability Data Connectors

Data connectors enable the Interoperability Service Module to combine and integrate various sources

of data within the MATRYCS-GOVERNANCE layer with a holistic approach able to disrupt data silos

and the poor communication.

In the MATRYCS project different NiFi processors, the main building blocks in Apache NiFi data flow,

have been configured to create specific data connectors with the different datasets provided with

different communication interfaces.

A set of NiFi Process Groups (see Figure 12) have been created for each MATRYCS Data provider (e.g

11

 https://nifi.apache.org/minifi/

12
 https://www.nginx.com/

13
 https://en.wikipedia.org/wiki/HTTP/2

https://www.nginx.com/
https://en.wikipedia.org/wiki/HTTP/2

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

28

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Pilots, Data HUBs, etc.) which include all relative data connectors (NiFi processors). The Process Group

represents a particular composition of input ports, processors, output ports and connections among

them. Each processor group solves a specific task regarding data flow, contributing to the overall goal

of data gathering and data integration in an interoperable manner from all assets, infrastructures, data

Hubs and datasets handled in the MATRYCS project.

Figure 12: Apache NiFi processor groups

3.2.3 Technological components

3.2.3.1 Overall description

The Interoperability Service module has been deployed by using and combining the following tools

and frameworks:

 Apache NiFi Cluster

 Apache Zookeper

 Apache MiniNifi

 Ngnix

Apache NiFi and Zookeper

Apache NiFi is an open-source tool under the Apache License 2.0 which provides the following high-

level capabilities:

 User-friendly Web User Interface

 Highly configurable (loss tolerant, low latency, high throughput, dynamic prioritization,

guaranteed delivery)

 Data Provenance (dataflow tracking from beginning to end)

 Designed for extension

 Secure (SSL, SSH, HTTPS, encrypted content, etc.)

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

29

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

In the Figure 13 the architecture of Apache NiFi is presented. The core concepts and further details on

the architecture of Apache NiFi can be found at https://nifi.apache.org/docs.html.

Figure 13: Apache NiFi Architecture

Apache NiFi also includes the ability to operate within clusters by using the Zero-Leader Clustering

paradigm to improve cluster performances. Each node in a NiFi Cluster has its own dataset, but they all

run the same preconfigured tasks on their data. So, each node will produce different results because

the data are different, although the task is the same. It is important to note that for the correct

execution of the NiFi cluster, Apache Zookeeper
14

 is used. Apache Zookeeper appoints one NiFi node

to be the Cluster Coordinator, and that node will keep track of the status of other nodes in a cluster, as

well as connection/disconnection of nodes (see Figure 14). Moreover, Zookeeper makes one node to be

the Primary Node. User Interface is used for easy and intuitive interaction with each node.

Figure 14: Apache NiFi Cluster

14

 https://zookeeper.apache.org/

https://nifi.apache.org/docs.html
https://zookeeper.apache.org/

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

30

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Apache MiNiFi

Apache MiNiFi is developed with the aim to enable data collection as close to the source of data

creation as possible. It can run at the edge level, on hardware with different main intend, such as

various IoT agents. It is lightweight and easy to deploy. MiNiFi supports a number of protocols for data

gathering, enables transformations of data, as well as routing to more powerful tools that can do more

complicated conversions, harmonisation, data curation, etc. Because of these aspects, MiNiFi is often

integrated with NiFi, which is the case in the MATRYCS project too.

Nginx

Nginx is a free and open-source web server and a reverse proxy server, capable of serving more than

10,000 simultaneous connections. It has TLS/SSL support, load balancing, support to serve static files

(see Figure 15). It can serve name-based and IP-based servers and have access control depending on

the client address.

Figure 15: Nginx Load-balancing Reverse Proxy

3.2.3.2 Deployment approach

As shown in the Figure 16, different tools and frameworks described in this section have been deployed

and configured to work closely together to create the Interoperability Service module environment.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

31

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Figure 16: Interoperability Service Module

Apache NiFi cluster

During this first phase of the project, a NiFi cluster composed of three different nodes has been

configured to guarantee the scalability of the platform and to be easily scaled up based on the future

project’s needs.

The characteristic of this specific configuration also means that it is not necessary to indicate a priori

which is the master node and its slaves serving services such as the user interface and the Cluster

Coordinator, but that each node can serve them independently.

Apache NiFi Cluster has been deployed using Docker technologies
15

 and each NiFi node has its own

Docker container. The official Apache NiFi Docker Hub repository is

https://hub.docker.com/r/apache/nifi.

Docker Compose, as a tool for configuring and running multi-container Docker applications, was an

obvious choice for Apache NiFi cluster deployment. In particular Docker Compose
16

 with a docker-

compose.yml file has been used to apply all the configuration details to the docker containers of each

NiFi node, and to configure the connections among them, as well as volumes and environment

variables used in the Docker container. Volumes have been used to preserve the configurations, states,

and data of each container even if the failure of the container happens. In Table 1 the docker compose

file used for the Apache NiFi node configuration is displayed.

All docker containers used to deploy the Apache NiFi cluster have been secured with TLS/SSL

certificates, both on the server and client side, enabling mutual authentication.

15

 https://www.docker.com/

16
 https://docs.docker.com/compose/

https://hub.docker.com/r/apache/nifi
https://www.docker.com/

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

32

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Table 1: NiFi node Docker Compose file

version: "3"

services:

 nifi:

 image: nifi_python3_pip3

 hostname: matrycsf.ml

 container_name: matrycs

 ports:

 - 1026:1026

 - 8080:8080 - 8084:8084

 environment:

 - NIFI_WEB_HTTP_PORT=8080

 - NIFI_REMOTE_INPUT_SOCKET_PORT=1026

 - NIFI_CLUSTER_IS_NODE=true

 - NIFI_CLUSTER_NODE_PROTOCOL_PORT=8084

 - NIFI_ZK_CONNECT_STRING=192.168.111.106:2181

 - NIFI_ELECTION_MAX_WAIT=1 min

 - NIFI_REMOTE_INPUT_HOST=matrycsf.ml

 - NIFI_CLUSTER_ADDRESS=matrycsf.ml

 - NIFI_JVM_HEAP_MAX=2g

 volumes:

 - /dati/dockers/apache-nifi:/opt/nifi/nifi-current/ls-target

 - /dati/dockers/apache-nifi/tmp:/tmp

 extra_hosts:

 - "matrycsf.tk:192.168.111.106"

 - "matrycsf.ga:192.168.111.107"

Apache Zookeeper

Apache ZooKeeper is the service for enabling distributed synchronisation, management and group

services of the MATRYCS Apache NiFi cluster. Confluent ZooKeeper, the NiFi cluster orchestrator, is

deployed using Docker technologies. A specific ZooKeeper docker container has been configured to

enable the correct behaviour of the NiFi cluster. This dockerized solution of Apache NiFi and

ZooKeeper has proved to be stable and easily transferable to other systems.

Apache MiNIFI

As described in section 3.2.3.1 Apache MiNiFi can be deployed at edge level and it can run as agent

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

33

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

software to collect data directly to its source. It means that the environments that will host the MiNiFI

agent could be different and not known a-priori. For these reasons, despite the possibility of installing

the various dependencies and downloading and installing the binaries files from NiFi's official

repository, Docker technologies have been identified as the best solution to deploy MiNIFI in the

MATRYCS project. A guide how to manage the dockerisation of Apache MiNiFi can be found at the

official GitHub repository
17

 of the Apache Software foundation.

Nginx

In the MATRYCS context, the NGINX Reverse Proxy has been deployed by using Docker technologies

(docker-compose method) in order to give a public entry-point to the Apache NiFi cluster. TLS/SSL

certificates have also been created and implemented for Nginx, guaranteeing encrypted connections.

In this way, secure connections are established between each of the applications presented and each

client. The official Nginx service on Docker Hub, available at https://hub.docker.com/_/nginx, has been

used to deploy the service.

In Table 2 the docker-compose.yml file used to deploy the NGINX Reverse Proxy for the MATRYCS

Interoperability Module. It creates the NGNIX docker container and maps to an external volume the

configuration file and log files.

Table 2: NGINX Docker Compose file

version: "3"

 services:

 nginx:

 image: nginx:latest

 container_name: nginx

 ports:

 - "80:80"

 - "8085:8085"

 - "8086:8086"

 - "8087:8087"

 volumes:

 - /dati/dockers/nginx/conf/:/etc/nginx/conf.d/

 - /dati/dockers/nginx/log/access.log:/var/log/nginx/access.log

 - /dati/dockers/nginx/log/error.log:/var/log/nginx/error.log

In Table 3 the NGINX configuration file is presented.

17

 Apache Mini NiFi GitHub repository: https://github.com/apache/nifi-minifi

https://hub.docker.com/_/nginx
https://github.com/apache/nifi-minifi

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

34

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Table 3: NGINX configuration file

upstream matrycsf.tk {

 server 217.172.12.158:8087;

}

server {

 listen 8087;

 server_name matrycsf.tk;

 server_tokens off;

 location / {

 proxy_pass http://192.168.111.107:8080;

 proxy_pass_header Server;

 proxy_hide_header X-Powered-By;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_headerX-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header Host $http_host;

 proxy_set_header X-Nginx-Proxy true;

 client_max_body_size 10m;

 client_body_buffer_size 128k;

 proxy_connect_timeout 90;

 proxy_send_timeout 90;

 proxy_read_timeout 90;

 proxy_buffer_size 4k;

 proxy_buffers 4 32k;

 proxy_busy_buffers_size 64k;

 proxy_temp_file_write_size 64k;

 }

}

3.2.4 Interaction with other Data Governance components

In the MATRYCS Governance, the Interoperability Service module interacts with the:

 MATRYCS assets, infrastructures, components

 Data Pre-processing and Semantic Enrichment component

Interoperability Service module interacts with the assets, infrastructures and components of the

MATRYCS data providers deploying dedicated data connectors able to integrate their datasets with

different standard.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

35

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

The datasets integrated in the MATRYCS platform will be make available in a file staging area of the

Interoperability Service module to be processed by the Data Pre-processing & Semantic Enrichment

layer.

3.3 Data pre-processing and semantic enrichment

3.3.1 Data pre-processing and semantic enrichment

implementation description

The Data pre-processing & semantic enrichment module is divided into three modules:

 Data pre-processing service

 MATRYCS data module

 Semantic enrichment

The data pre-processing service will cover the functionality of anonymization, and data curation. The

MATRYCS data module transforms LSP data to the common data model, which relies on the standard

building data model and well-established vocabularies. The semantic enrichment will provide a

semantic annotation to the data and establish an ontology to cover genetic semantic information in

the building domain.

3.3.2 Technological components

3.3.2.1 Overall description

The Data pre-processing service is integrated with Apache NiFi, which is designed to automate the

flow of data between software systems. Apache NiFi follows the concept of extract, transform, load

(ETL), which extracts data from heterogeneous source and transform them into a proper format, which

in MATRYCS is JSON format. JSON
18

 is a lightweight data-interchange format. It is human-readable

and easy for machines to parse and generate. These properties make JSON ideal for the output format

of the data pre-processing service. Additionally, Apache NiFi provides a web-based user interface,

which makes the monitoring intuitive and improves usability. One of the key features, which is used in

data pre-processing service, is the ExecuteScript NiFi processor
19

. The ExecuteScript supports Clojure
20

,

ECMAScript
21

, Groovy
22

, Lua
23

, Python
24

, and Ruby
25

. This provides the possibility of individual data

processing applying suitable language. Additionally, different possible anonymization technologies:

directory replacement, masking out, data encryption, and custom anonymization, can be integrated in

18

 https://www.json.org/json-en.html

19
 https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi/nifi-scripting-

nar/1.5.0/org.apache.nifi.processors.script.ExecuteScript/index.html

20
 https://clojure.org/

21
 https://www.ecma-international.org/publications-and-standards/standards/ecma-262/

22
 https://groovy-lang.org/

23
 https://www.lua.org/

24
 https://www.python.org/

25
 https://www.ruby-lang.org/en/about/

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

36

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

the Data pre-processing service. Therefore, the MATRYCS data module and Semantic enrichment

module are also integrated with Apache NiFi. This makes the data pipeline between each module more

stable and easier to interconnect.

3.3.2.2 Deployment approach

In this 1
st
 technology release, we are focusing on the MATRYCS Data Model and Semantic Enrichment

since the output is the input for Data storage and Reasoning engine.

Before starting with the development approach, the distinction between data model and ontology,

which will be defined by the MATRYCS Data Model and Semantic Enrichment module, should be

described.

The data model and the ontology are compared in four aspects
26

 (see Table 4). Both describe the

structure of the data but, while the data model is more task specific and implementation oriented, the

ontology is more generic. The more generic the ontology is, the more interoperable and reusable it is.

A compromise between generality and specificity should be reached. In the MATRYCS project we

propose to reuse already existing standard ontologies and data models. The Data model is processed

by normalization, which reduces data redundancy and improve data integrity. Therefore, the volume of

data in Data storage is reduced. FIWARE Smart Data Model is applied to normalize the data, which

provides different data model in smart domain. We also propose modifying then to meet specific

requirements while keeping the ontology as generic as possible by avoiding modifying specific data.

The data model is modified by our specific requirement and the ontology will keep generic by

avoiding modifying the specific data.

Table 4: Comparison data model with ontology

Aspects Data Model Ontology

Operation levels Less abstract More abstract

Expressive power High Low

User, purpose and goal relatedness High Low

Extendibility Low High

 The Common Data Model design approach is defined as follows:

 Determine the domain and scope of the data model

 Consider reusing existing schemas

 Define the common entity and entity hierarchy, which should cover all the different

LSP data.

 Define the common attribute in the defined class

 Map each pilot data to the Common Data Model

26

 SPYNS, Peter; MEERSMAN, Robert; JARRAR, Mustafa. Data modelling versus ontology engineering. ACM SIGMod Record,

2002, 31. Jg., Nr. 4, S. 12-17

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

37

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

As mentioned before, the Semantic Enrichment module will establish an ontology. An ontology defines

a common vocabulary for researchers who need to share information in a domain. It provides a

common understanding of the structure of information among people or software agents. Developers

or other data users can easily use the data without specific domain knowledge.

The approach
27

 to develop an ontology can be summarized as follows:

 Determine the domain and scope of the ontology

 Consider reusing existing ontologies

 Define the common class and class hierarchy

 Define class properties.

 Define the facets of the properties, which can be considered as “the properties of the

properties”

 Create instances

The raw data integrated through the Interoperability Service module is handled by the Data Pre-

processing module which will process and transform it according to the defined MATRYCS common

data model. These data modelling processes are developed with Python and integrated into Apache

NiFi. The implementation details can be found in the section 5.1.2. The development of the data pre-

processing is yet to begin and will be described in the 2
nd

 Technology Release of this deliverable.

3.3.3 Interaction with other Data Governance components

As shown in the overview data governance implementation (see Figure 2), the raw data is provided by

the Interoperability Service module. The raw data can be in different data formats. The data pre-

processing module transforms the data format to JSON and processes other necessary data cleaning

functions. The top-level interaction contains two parts. The first part is the modified data with the data

storage. This connection is through the Streaming module (see section 3.4). The second part puts the

RDF data into the Reasoning Engine. This is also through the Streaming module. The huge advantage

in this structure is that the Reasoning Engine can not only get the semantic data, but also the modified

common data. Therefore, the Reasoning Engine may have a better chance of building advanced

semantic services.

3.4 Streaming module

3.4.1 Streaming module implementation description

As streaming module in the MATRYCS project, the Confluent data streaming platform
28

 that relies on

Apache Kafka
29

 is used. This platform enables high-volume real-time streaming, publishing and

subscribing to the messages, storing and processing of data. Confluent is also chosen as it gives the

most complete distribution of Kafka. This platform enhances the experience of both operators and

27

 NOY, Natalya F., et al. Ontology development 101: A guide to creating your first ontology. 2001

28
 https://www.confluent.io/

29
 https://kafka.apache.org/

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

38

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

developers.

3.4.2 Technological components

The Confluent platform is implemented on-premises. The whole set of tools that revolve around

Apache Kafka and help in working with and managing the streaming platform is installed. ZooKeeper

component is essential in doing the management of the Kafka brokers. Apache Kafka is an event

streaming platform. As Kafka facilitates real-time data analysis, the connected MATRYCS modules can

have up-to-date information and make predictions regarding different subjects. In the Figure 17 a

graphical representation of the general Kafka Architecture.

As Kafka is designed for distributed environment, it is well suited for possible expansion to the network

of nodes, and therefore easily adaptable and scalable for the needs of the MATRYCS project.

Figure 17: Apache Kafka Architecture

Apache Kafka is able to manage a huge number of data sources, processes the stream of their

information, and organises them into topics. Messages that are received are often called events or

records. There are two main concepts: a function called Producer and another interface called

Consumer. The Producer is an interface that enables sending data to topics. Topics represent the

ordered, segmented data, a kind of database known as Kafka Topic Log. Topics are partitioned, which

is important for the environment with multiple Kafka brokers. Messages that have the same event key

are written to the same partition.

In the Figure 18, the topic with four partitions is shown. Also, two producers are publishing messages to

the same topic. They are connecting over the network and they are writing the events to the topic, and

particularly, writing into partitions of the selected topic. Events that have the same key are written to

the same partition, as it is already stated.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

39

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Figure 18: Kafka with multiple partitions for the topic and two producers

Consumers are the clients that can subscribe to (read and process) messages. Consumer enables the

events to be read and information to be sent to other modules. Kafka retains all published messages

for a certain period that can be configured. It does not make difference if messages are consumed or

not, they all will be discarded at the same time, after they are not needed anymore. Storing streams

durably and reliably is one of the main features of Kafka.

Besides the Producer API, the Consumer API, and the Kafka Streams API, Kafka APIs
30

 include the

Admin API and the Kafka Connect API. The Admin API manages all Kafka objects, such as topics and

brokers. The Kafka Connect API have hundreds of connectors, such as connectors to relational

databases, and other import/export connectors.

The next step includes enabling only SSL connections to Apache Kafka, with mutual authentication

which will contribute to much better security and privacy.

3.4.2.1 Overall description

Apache Kafka is a central part of the Confluent platform. Other parts include Control Center for topic

management, monitoring and analysing, ksqlDB
31

 for event stream processing, Kafka Connect Datagen

source connector for generating mock data, as well as ZooKeeper
32

, Schema Registry
33

, HTTP REST

Proxy
34

 for Kafka.

Control Center has a Web UI that natively runs on port 9021 and can be used for Kafka topics creation.

Topics are selected from the Cluster submenu and a new topic with a specific name and a number of

partitions can be created. From Control Center we also can see Overview, Brokers, ksqlDB, Consumers,

etc.

Apache Kafka is a distributed streaming platform for handling Big Data, evolved from a simple

messaging queue. Today it represents a scalable, fault-tolerant system for powerful streaming. Besides

robust Web UI and REST API, Confluent Kafka enables users to use CLI in order to create topics,

30

 https://docs.confluent.io/platform/current/connect/references/restapi.html

31
 https://ksqldb.io/

32
 https://zookeeper.apache.org/

33
 https://docs.confluent.io/platform/current/schema-registry/develop/api.html

34
 https://docs.confluent.io/platform/current/kafka-rest/api.html

https://zookeeper.apache.org/

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

40

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

publish and consume messages.

Apache Kafka facilitates event streaming. It gathers data in a real-time manner from data sources like

databases, IoT devices, sensors, software applications. In this way, Apache Kafka enables a continuous

data flow and data integration. Apache Kafka event streaming can be applied to a big number of use

cases, such as payments and financial transactions in real-time, monitoring of cars, shipments etc.,

gathering and analysing of sensor data, reaction to customers’ orders, enabling interaction among

different divisions of a selected company. The most prominent use cases, that are used in the

MATRYCS project also, are to be the bases of data platforms, event-driven architecture, as well as

microservices.

3.4.2.2 Deployment approach

Confluent Platform can be deployed using several different methods:

 Cloud provider

 Using an archive, DEB or RPM package

 Docker technologies

Confluent Operator enables automation of deployment of the platform as a cloud-native, stateful

container on Kubernetes and OpenShift.

In this first technology release, Confluent platform has been deployed on-premise using Docker

technologies with the docker-compose method for the deployment.

The official Docker image is being hosted on Docker HUB at the following link

https://hub.docker.com/u/confluentinc. It is also possible to extend and rebuild images from the

official GitHub repository https://github.com/confluentinc.

Docker-compose method

In Table 5, the docker-compose file used to deploy all the necessary parts of the Confluent platform,

together with Apache Kafka.

Table 5: Docker-compose file for Apache Kafka

version: '3'

services:

 ...

 broker:

 image: confluentinc/cp-server:6.0.1

 hostname: broker

 container_name: broker

 depends_on:

 - zookeeper

 ports:

https://hub.docker.com/u/confluentinc
https://github.com/confluentinc

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

41

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

 - "9092:9092"

 - "9101:9101"

 environment:

 KAFKA_BROKER_ID: 1

 KAFKA_ZOOKEEPER_CONNECT: 'zookeeper:2181'

 KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: PLAINTEXT:PLAINTEXT,PLAINTEXT_HOST:PLAINTEXT

 KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://broker:29092,PLAINTEXT_HOST://217.172.12.158:9092

 KAFKA_METRIC_REPORTERS: io.confluent.metrics.reporter.ConfluentMetricsReporter

 KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1

 KAFKA_GROUP_INITIAL_REBALANCE_DELAY_MS: 0

 KAFKA_CONFLUENT_LICENSE_TOPIC_REPLICATION_FACTOR: 1

 KAFKA_CONFLUENT_BALANCER_TOPIC_REPLICATION_FACTOR: 1

 KAFKA_TRANSACTION_STATE_LOG_MIN_ISR: 1

 KAFKA_TRANSACTION_STATE_LOG_REPLICATION_FACTOR: 1

 KAFKA_JMX_PORT: 9101

 KAFKA_JMX_HOSTNAME: localhost

 KAFKA_CONFLUENT_SCHEMA_REGISTRY_URL: http://schema-registry:8081

 CONFLUENT_METRICS_REPORTER_BOOTSTRAP_SERVERS: broker:29092

 CONFLUENT_METRICS_REPORTER_TOPIC_REPLICAS: 1

 CONFLUENT_METRICS_ENABLE: 'true'

 CONFLUENT_SUPPORT_CUSTOMER_ID: 'anonymous'

 ...

Besides the Docker Compose method for deploying Apache Kafka, Docker Compose is used for all

other components in the Confluent platform. The Docker-compose file consists of:

 Name of the service. The containers can be named too.

 Image for each service is from the official Docker Hub of Confluent

 Ports are mapped to the inner ports on which the services are running.

 Multiple environment variables are set. There are other ways of configuring

environment variables, such as .env files, that also can be explored.

 Volumes are used where is needed to persist particular data when new Docker

Containers are created/rebuilt or even if the failure of Docker container happens,

mostly for ZooKeeper and Kafka.

 Bridge networking is utilized as the platform is deployed on a single host.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

42

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

3.4.3 Interaction with other Data Governance components

After data acquisition phase in the Interoperability module and data curation phase in the Data Pre-

Processing & Semantic Enrichment module, the MATRYCS data is delivered to the Streaming module

with the aim of sending it as a data stream to both the Reasoning Engine and the Data Storage

components. In particular, after finalising data curation, cleansing, anonymisation, semantic annotation

and modelling, Data Pre-Processing & Semantic Enrichment module sends the messages to the

appropriate topics in Kafka created for each dataset (see Figure 19).

Figure 19: Interaction of the Streaming Module with other components

Dedicated NiFi processors have been used for the Kafka connection (see Figure 20) and they have been

configured to work with a particular topic and at a scheduled time. This configuration enables

consumers to easily find the data of interest and get the messages from the topic.

Figure 20- NiFi PublishKafka processor configuration

Kafka data streaming is also used by the Evaluation module and Serving framework implemented in

the MATRYCS-PROCESSING layer. They can consume messages from the specific topics and make

further tuning of ML models and evaluation, as well as predictions based on the consumed messages.

In these modules, the appropriate Python libraries are installed and configured that enable high-level

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

43

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

connection and consumption of messages from a specific topic (see Figure 21). Several libraries are

taken into consideration and their performances are under evaluation. These would lead to more

efficient integration, processing and real-time streaming of gathered data sets.

Figure 21: Confluent Kafka package in Jupyter environment

3.5 Data Storage

3.5.1 Data Storage implementation description

Implementation of data storage area will be based on Apache Kafka
35

 message broker system

(Streaming module), which will be the main source of data. For this, a special microservice will be put

in place. Its purpose will be fetching data from a Kafka cluster and distributing the data accordingly to

the data storage. Microservice will be implemented in Golang
36

 language, which is an open source,

simple, reliable and efficient language, thus making it a well-suited language for such microservices

35

 https://kafka.apache.org/

36
 https://golang.org/

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

44

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

and application programming interfaces (APIs).

The microservice will have a Kafka consumer as the main connection endpoint towards Kafka.

Messages will be pulled from Kafka when they arise for a specific Kafka topic. Kafka consumer will

understand other Kafka related features needed for normal operation, such as topic partitions, Kafka

topic offset as marker of already consumed messages, etc.

As messages are taken from a Kafka Topic, they will be stored in a temporary storage area for

aggregation and preparation for the Reasoning engine to perform further transformation of data.

This microservice will be built and set up using the most minimal image in Docker (also called scratch

Docker image) for optimal resource usage. As such, it may be hosted on a Linux server under

systemd
37

 suite or pushed to some orchestration system such as Kubernetes
38

.

For storage itself, Linux filesystem will be used as a shared storage for the staging area, whereas for

the persistent storage, cloud storage will be used. The storage solution will depend on the selection of

the public cloud provider.

An important part of storage is currently ScyllaDB
39

 as a real-time big data, column based, distributed

database built for modern applications. Initially, ScyllaDB has been set up as Docker-based container;

later on, this setup would be done in a clustered manner, providing higher scalability and performance.

However, at M9, after some integration and performance test with the MATRYCS-PROCESSING layer

and in particular with the Data Feed Module, a new technological solution based on the document-

oriented database MongoDB
40

 instead of the columnar database ScyllaDB, is being evaluated in

parallel to improve the performance of this module. Preliminary integrations and tests with MongoDB

have been performed in the Data Feed Module of the MATRYCS-PROCESSING layer and reported in

D4.1 – MATRYCS-PROCESSING (1
st
 technology release)

41
. This change of the technological solution for

the data storage module will be reported in the 2
nd

 technology release.

3.5.2 Technological components

3.5.2.1 Overall description

As mentioned above, from a technical perspective, the following technologies, systems, and languages

will be used:

 Linux server with Ext4 or XFS filesystem for hosting storage and services.

 Golang language for the development of the microservice and APIs required.

 Docker as a containerization tool for easier deployment and maintenance.

37

 https://systemd.io/

38
 https://kubernetes.io/

39
 https://www.scylladb.com/

40
https://www.mongodb.com/

41
 D4.1 – MATRYCS-PROCESSING (1

st
 technology release)

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

45

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

3.5.2.2 Deployment approach

Golang based microservice will be deployed as a Docker container. Such a container may be deployed

either on a bare-metal server, cloud virtual server or other technologies like Kubernetes.

The Dockerfile for the data storage microservice can be seen in Table 6 whereas the ScyllaDB setup

approach is illustrated in Table 7.

Table 6: Data storage microservice Dockerfile

FROM golang:1.16.4-alpine as builder

RUN mkdir /build

COPY . /build/

WORKDIR /build

RUN go mod download -x

RUN CGO_ENABLED=0 GOOS=linux go build

run

FROM scratch

WORKDIR /app

COPY --from=builder /build/endpoint /usr/bin/endpoint

ENTRYPOINT ["endpoint"]

Table 7: Docker-compose file for ScyllaDB

version: '3'

services:

scylla:

 image: scylladb/scylla:4.1.0

 container_name: scylla-dev

 restart: always

 port:

 - “9042:9042”

 healthcheck:

 test: ["CMD-SHELL", "nodetool status"]

 interval: 20s

 timeout: 10s

 retries: 20

 logging:

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

46

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

 driver: "json-file"

 options: max-size: 50m

3.5.3 Interaction with other Data Governance components

Interaction with other data governance components will be possible via a direct call or data push from

the data storage microservice. The required interactions are under consideration but will be developed

using a distributed query engine based on Presto
42

. Presto will allow users to interact with data on

shared storage, temporary storage or in DB engine. Additionally, there will be predefined direct access

to the staging area for the Reasoning Engine to access data that needs further transformation.

3.6 Reasoning Engine

3.6.1 Reasoning Engine implementation description

Reasoning engine is the component which function is to extract insights and identify hidden patterns

from data. It takes as input a stream of data the output of the Streaming module, produced through a

Kafka topic. In order to consume these streams of data, the Reasoning Engine must be a Kafka

consumer, subscribed on specific topics for incoming messages. To leverage its inference

functionalities, a powerful database suitable for reasoning is being used, Neo4j graph database is

being used. After receiving the incoming messages, the Kafka consumer enables several scripts, written

in Cypher
43

 query language (the query language of Neo4j
44

) to insert the data into Neo4j structures,

for later querying and inference. The reasoning engine provides REST APIs, for submitting queries

directly to the Graph database, enabling requested parties to gain access into the graph entities and

connections. The programming language that has been used developing the first version of Reasoning

Engine is Python 3.7 the Kafka Consumer is developed also in Python 3.7, using Confluent Kafka

Python library. The Neo4j 4.3 edition is used and the official Neo4j Python driver
45

 for executing

Cypher queries in Python. The REST functionalities of the Reasoning Engine are served using the Flask

Rest framework. In the figure below the overview of the Reasoning Engine solution is demonstrated:

42

 https://prestodb.io/

43
 Cypher, https://neo4j.com/developer/cypher/

44
 Neo4j, https://neo4j.com/

45
 Neo4j Python, https://neo4j.com/docs/api/python-driver/current/

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

47

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Figure 22: Reasoning Engine Solution and sub-modules

3.6.2 Technological components

3.6.2.1 Overall description

As shown in the Figure 22, the Reasoning engine consists of 3 layers. The data import layer, the Neo4j

graph database and the Retrieval REST API. In the first layer, the incoming data are being consumed

from the Reasoning Engine’s Kafka Consumer. The Kafka consumer then, uses the Neo4j Data

importers to upload, the data into Neo4j graph database (using the Cypher programming language

and the relevant Neo4j Python driver) and creates the respective entities and connections. The second

layer, Neo4j graph database, contains all the data in entities and connections. The format that Neo4j

stores the data, is suitable for inference functionalities and reasoning over the data by leveraging

graph functionalities. The third layer is the stage in which the application, by exposing a REST service,

demonstrates the stored data to the end user. The end user submits Cypher queries to the retrieval

engine, the query pre-processing module distributes that query to Neo4j graph database, and then the

results are sent back to the end user in JSON format.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

48

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Table 8: Example of Reasoning Engine REST API

curl --location --request POST 'http://reasoning_engine:5000/query' \

--header 'Content-Type: text/plain' \

--data-raw '

MATCH (b:Building)-[:has_municipality]-(m:Municipality {name: '\''ADRADA (LA)'\''})

WITH b

MATCH (b)-[:has_primary_cons]->(prim_cons:PrimaryCons)-[:has_primary_label]->(r:Label {rating: '\''C'\''}

RETURN b'

In the context of reasoning engine a recommendation service for LSP10, has been tested, taking as

input building metrics, such as the building’s total consumption and CO2 emissions for heating hot

water and electricity. The recommender system enables graph similarity measurements (e.g., graph

cosine similarity) to return action plans and activities that similar buildings have followed for CO2 and

energy reduction. In Table 9 the REST API used for receiving recommendations is presented.

Table 9: Example of Reasoning Engine LEIF Recommendation Service

curl --location --request POST 'http://reasoning_engine:5000/leif/service' \

--header 'Content-Type: application/json' \

--data-raw '{

 "heating_total_consumption": ${heating_total_consumption},

 "heating_co2_emission": ${heating_co2_emission},

 "hot_water_total_consumption": ${hot_water_total_consumption},

 "hot_water_co2_emission": ${hot_water_co2_emission},

 "electricity_total_consumption":${electricity_total_consumption},

 "electricity_co2_emission":${electricity_co2_emission}

}

3.6.2.2 Deployment approach

The Reasoning Engine and the Neo4j graph database are installed using Docker and docker-compose

scripts. In Table 10 the docker-compose.yaml file that is used for the module’s installation is presented.

Table 10: Docker-compose file for Reasoning Engine

version: '3'

volumes:

 neo4j_data:

services:

 neo4j:

 image: neo4j:latest

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

49

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

 container_name: neo4j

 hostname: neo4j

 network_mode: "bridge"

 volumes:

 - neo4j_data:/data

 restart: always

 ports:

 - "7474:7474"

 - "7687:7687"

 environment:

 NEO4J_dbms_security_procedures_unrestricted: apoc.*

 NEO4J_apoc_import_file_enabled: "true"

 NEO4J_dbms_shell_enabled: "true"

 NEO4J_HEAP_MEMORY: 8G

 NEO4J_CACHE_MEMORY: 8G

 NEO4J_AUTH: neo4j/neo4j1

 NEO4J_dbms_memory_pagecache_size: 8G

 NEO4JLABS_PLUGINS: '["apoc", "n10s", "graph-data-science"]'

 NEO4J_dbms_memory_heap_initial__size: 8G

 retrieval_engine:

 hostname: retrieval_engine

 container_name: retrieval_engine

 restart: always

 build:

 context: ".."

 dockerfile: config/Dockerfile

 ports:

 - 5000:5000

3.6.3 Interaction with other Data Governance components

The Reasoning Engine interacts by streaming data, with the Streaming module. More specifically

Reasoning Engine leverages Faust Consumers. Faust
46

 is a Python library that implements Kafka

Streams in Python and these consumers receive data coming from various Kafka topics and persist

these data to Neo4j graph database. The following schema demonstrates the interaction with Data

46

 https://faust.readthedocs.io/en/latest/

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

50

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Streaming Module.

Figure 23: Reasoning Engine interaction with Data Streaming Module

The advantage of using Faust Consumer instead of plain Confluent Kafka consumers is that one

consumer can be subscribed on multiple topics and by using Faust streams Windows
47

 it is possible to

batch insert multiple events. With this strategy the Reasoning engine throughput is minimized.

3.7 High Performance Distributed Query Engine

3.7.1 High Performance Distributed Query Engine implementation

description

The High-Performance Distributed Query Engine is based on Presto
48

, an open-source and highly

maintained project. It is one of the main components for accessing data in MATRYCS-GOVERNANCE.

Presto allows usage of SQL for accessing and querying data in semi-structured and structured storage.

It can be used to access data in files as well as in distributed remote sources. Furthermore, it can be

used for accessing and querying data from multiple DB engines. Presto will allow querying over data

stored in different locations, that being staging area, cloud storage, etc.

The implementation of High-Performance Distributed Query Engine will be done using the Docker

ecosystem. This will serve as a more agile approach with respect to changes in different versions and

future upgrades. Later on, this may be used to deploy High Performance Distributed Query Engine on

various target system, from bare-metal to high-end cloud virtual servers.

3.7.2 Technological components

3.7.2.1 Overall description

Presto is an open-source distributed SQL query engine for running interactive analytic queries against

47

 https://faust.readthedocs.io/en/latest/userguide/tables.html

48
 https://prestodb.io/

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

51

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

data sources of all sizes, ranging from gigabytes to petabytes. Presto allows querying data from

multiple sources, including Hive
49

, Cassandra
50

, ScyllaDB
51

, relational databases or proprietary data

stores.

3.7.2.2 Deployment approach

The deployment approach for Presto will be initially based on a Docker image and running everything

as a standalone Docker container. This can be later deployed to various targets. The deployment

Docker files can be seen in Table 11 and Table 12.

Table 11: Dockerfile for Presto
52

FROM openjdk:8-jre

EXPOSE 8080

MAINTAINER Greg Leclercq "ggreg@fb.com"

ARG PRESTO_VERSION=0.218

ENV PRESTO_PKG presto-server-$PRESTO_VERSION.tar.gz

ENV PRESTO_PKG_URL https://repo1.maven.org/maven2/com/facebook/presto/presto-

server/$PRESTO_VERSION/$PRESTO_PKG

ENV PRESTO_CLI_JAR_URL https://repo1.maven.org/maven2/com/facebook/presto/presto-

cli/$PRESTO_VERSION/presto-cli-$PRESTO_VERSION-executable.jar

Install python to run the launcher script

RUN apt-get update

RUN apt-get install -y python less

Download Presto package

Use curl rather ADD <remote> to leverage RUN caching

Let curl show progress bar to prevent Travis from thinking the job is stalled

RUN curl -o /$PRESTO_PKG $PRESTO_PKG_URL

RUN tar -zxf /$PRESTO_PKG

Create directory for Presto data

49

 https://hive.apache.org/

50
 https://cassandra.apache.org/

51
 https://www.scylladb.com/

52
 https://github.com/prestodb/f8-2019-demo/blob/master/Dockerfile

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

52

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

RUN mkdir -p /var/lib/presto/data

Add Presto configuration

WORKDIR /presto-server-$PRESTO_VERSION

RUN mkdir etc

ADD etc/jvm.config etc/

ADD etc/config.properties etc/

ADD etc/node.properties etc/

ADD etc/catalog etc/catalog

Download Presto CLI

RUN mkdir -p bin

RUN curl -o bin/presto-cli $PRESTO_CLI_JAR_URL

RUN chmod +x bin/presto-cli

CMD bin/launcher.py run

Table 12: Docker-compose file for Presto

version: ‘3’

networks:

 config_matrycs_network:

 external: true

services:

 presto:

 container_name: presto

 hostname: presto

 networks:

 - config_matrycs_network

 restart: always

 build: .

 ports:

 - “8080:8080”

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

53

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

3.7.3 Interaction with other Data Governance components

The Data Governance components may interact with High Performance Distributed Query Engine in

two ways:

 Presto Client REST API provides an interface for query submission and obtaining

query results.

 Staging Storage enables direct interaction and usage from other components.

Additionally, Presto provides a graphical user interface to end users for running queries.

3.8 Trusted Data Sharing (DLT/Blockchain)

3.8.1 Trusted Data Sharing implementation description

The Trusted Data Sharing will be based on the blockchain implementation; the blockchain data sharing

structure is a collection of blocks storing a list of valid transactions and the hash of the previous block

(Figure 24). The linked structure makes tamper attempts evident since any changes in one of the already

registered blocks will break the hash contained in the following blocks. Each transaction must have a

valid cryptographic signature and, since the blocks are timestamped and ordered chronologically, this

means that it is possible to assure the provenance property by tracking entries at the moment of their

registration in the blockchain.

Figure 24: Blockchain data structure

The blockchain network for data sharing energy transactions can be modelled as a private

permissioned network in which each user (please note that generally speaking, a user can be a

consumer, this is more suitable for the present project, but also a producer of energy) is associated

with a node of the blockchain network. Depending on the resources available and the degree of trust

between peers within the network, different network configurations can occur. Optionally, it will be

possible to rely one public blockchain according to the specific context needs.

Nodes can be light or full, depending on their computational power and data storage capacity (e.g.,

nodes 2 and 5 in Figure 25). Moreover, some users may decide to delegate the control of transactions

to another node they trust and not use their own node.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

54

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Figure 25: Blockchain network

Our solution will combine the on-chain data storage together with distributed (or centralized)

databases for off-chain data storage according to an hybrid approach. In order to minimize the

amount of data to be stored on the blockchain, raw data from the data sources will be stored using a

distributed database: the blockchain will be then used periodically to store a fixed-length hash of the

data received in the last time interval. The hybrid approach combines the scalability of a distributed

NoSQL database with the blockchain, making tampering attempts evident, enabling provenance

tracking, non-repudiability, and the use of self-enforcing smart contracts.

Figure 26: Trusted data sharing flow

Each data source (Figure 26) will be connected to a gateway, an embedded device which takes care of

pre-processing, calculating digital fingerprints (hash codes) to assure data immutability via

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

55

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

notarization, and storing the data off-chain. It is also included the possibility that handle data from the

Data Storage. A private network based on Ethereum
53

 will be used as blockchain network. The

Ethereum nodes provide the networking capabilities and the rules needed to determine consensus

among them. The private network will be used as a platform for running smart contracts and register

data with a timestamp.

Thanks to dedicated APIs, every node in the network can be queried and it is possible to build

dedicated applications on top of this stack for monitoring the process, validating the off-chain data

against the data stored on-chain, provide limited access for auditing purposes, or provide even finer-

grained access to specific users for specific purposes, interacting with smart contracts deployed in the

network.

3.8.2 Technological components

3.8.2.1 Overall description

The proposed solution will be based on Ethereum in term of blockchain consensus mechanism, in

addition, connection with IoT devices will be implemented via MQTT
54

, a lightweight protocol suitable

for unstable connections and low-power devices. Additionally, connection with NoSQL Data Storage

will be supported for off-chain data handling.

ETHEREUM

Blockchains can be distinguished according to the consensus mechanism and programming

capabilities. Considering the consensus mechanism, blockchains differ in the definition of the

participation of nodes in the distributed network and the roles that they can perform. In particular,

open blockchains and permissioned (or private) blockchains can be distinguished. Considering the

programming capabilities, it is possible to differentiate between blockchains programmable via simple

scripting and blockchains providing Turing-complete computational capabilities, enabling the creation

of “smart contracts”. Ethereum was the first blockchain supporting smart contracts and it is still the

most notable example of Turing-complete programmable blockchain.

Ethereum was proposed by Vitalik Buterin in 2013 (Ethereum Whitepaper)
55

 and further detailed by

Gavin Wood in the ‘yellow paper’ (Ethereum: A Secure Decentralised Generalised Transaction Ledger

(Wood))
56

. As the Ethereum website (Ethereum) reports, “Ethereum is a decentralized platform that

runs smart contracts.” These contracts run on the “Ethereum Virtual Machine” (EVM), a distributed

computing network made up of all the devices running Ethereum nodes. Like other blockchains,

Ethereum has a native cryptocurrency called Ether (ETH) and it has a double use: it is used as an

incentive for the network “validators”, but also to regulate the use of the blockchain computational

resources.

Each operation on the Ethereum network has its own cost, determined by the computation, storage

53

 https://ethereum.org/en/

54
 https://mqtt.org/

55
 https://ethereum.org/en/whitepaper/

56
 https://gavwood.com/paper.pdf

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

56

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

and bandwidth required, and this cost is measured in a unit called Gas. gasLimit (the maximum

amount of gas that can be spent) and gasPrice (the price-per-gas) are standard transaction parameters

in Ethereum and also invoking a smart contract function both must be specified. Since smart contracts

are run on a virtual machine, the presence of the gas price and limit have the purpose of preventing

denial-of-service attacks. More specifically, is impossible to run infinite loops (due to the gas limit) and

the non-optimised usage of system resources would be expensive due to the gas price. Gas and Ether

are different concepts. Ether is a currency, while Gas is an internal transaction pricing mechanism that

measures the amount of computational effort that it will take to execute certain operations (each line

of code of an application requires a certain amount of gas to be executed in the Ethereum network).

Gas is always paid in Ether. Having a separate unit allows maintaining a distinction between the actual

valuation of the cryptocurrency (Ether), and the computational cost (Gas).

MQTT

MQTT is an OASIS standard messaging protocol for the Internet of Things (IoT). It is designed as an

extremely lightweight publish/subscribe messaging transport that is ideal for connecting remote

devices with a small code footprint and minimal network bandwidth. MQTT today is used in a wide

variety of industries, such as automotive, manufacturing, telecommunications, oil and gas, etc.

3.8.2.2 Deployment approach

The section 3.8.1 describes the role of the gateways in enabling IoT devices for blockchains. These are

embedded devices (or similar, low-power devices) operating at the edge level connecting and

managing the different IoT devices (Figure 27).

Connection with IoT devices will be implemented via MQTT, a lightweight protocol suitable for

unstable connections and low-power devices. The gateway periodically will receive information about

the status of the devices connected, pre-processes input data as needed, and store them to a

distributed database in the cloud, using an asynchronous communication queue.

The gateway periodically calculates a fingerprint of the data received from the device and stores the

result on the blockchain.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

57

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Figure 27: IoT Gateway

MQTT communication will be authenticated and each IoT device (Figure 28) assigned a gateway and a

specific topic for its messages, so it will be possible to keep track of the origin of the information

received.

Blockchain transactions will be signed with the private cryptographic key of the gateway that sent

them, so that each reading will be associated in the smart contract with the corresponding gateway.

Off-chain data consistency verification will be performed by calculating on-the-fly the fingerprint of

the data to be verified and comparing it with the fingerprint stored on the blockchain for the same

time interval. If the two fingerprints match, the information is unaltered; if not, there may be a possible

manipulation or malfunction.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

58

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Figure 28: Blockchain platform architecture

3.8.3 Interaction with other Data Governance components

Within the MATRYCS-Governance the Trusted data sharing module will interact mainly with:

 the Data Storage for the extraction of harmonized data in order to calculate related

fingerprint, (it should be noted that, even if in Figure 28 the data storage is indicated

as a distributed database, this approach can be used for distributed, such as for a

central database, as indicated in the MATRYCS general architecture)

 the Blockchain network (Ethereum) for the physical fingerprints (hash codes) storage in

the chain blocks to assure data immutability.

This will be the main mechanism to assure immutability of data stored into the MATRYCS Data

Storage. Optionally, the Trusted data sharing module could interact directly with the MATRYCS

components, and external data providers in case of direct raw data handling; in this case the

interaction will require specific data connectors to integrate the datasets with different standard and

access interfaces.

3.9 End-to-End Security framework

At the heart of every information system are data. Data governance – the definition of involved

processes in the management of access, availability, usability, (regulatory) compliance, and security of

data – is recognized as necessary in this domain. The governance of data must be fundamentally

defined in terms of 1) policies for creating, accessing, and using the data, 2) authentication,

authorization, and auditing enforcement, and 3) management of data and policies over the complete

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

59

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

lifecycle. Additionally, the governance frameworks must be extended with security standards and tools.

To enable secure data exchange, trust must be established with respect to identification,

communication protection and usage control. An overview of the state-of-the-art on cyber security

and governance models for secure data and information delivery has been provided in D2.1: State-of-

the-art analysis and Big Data Value Chain.

The End-to-End Security framework encompasses MATRYCS platform privacy/security mechanisms

with respect to anonymization, authentication, authorization, auditing, encryption, and software

vulnerabilities/flaws detection and mitigation. It provides fine-grained access control and enables the

implementation of advanced security policies to MATRYCS infrastructure, assets, services, end-users,

and data. The End-to-End Security framework solution is based on four pillars:

1. Identity and access management: Entity authentication and fine-grained authorization

policies based on access control mechanisms. System event logging provides access auditing

and traceability. The solution to be utilized is Keycloak
57

.

2. Service mesh: As MATRYCS opts for a microservice architecture, a service mesh microservices

composition for application-level security provisioning and secure service integration will be

employed. Ensures service-to-service level encryption. The solution utilized will be Istio
58

.

3. Privacy management: Anonymization, compliance, and privacy policies enforcement in the

system-wide deployment.

4. Security management: Software and system vulnerabilities/flaws detection, mitigation, and

security configuration/enforcement.

The End-to-End Security framework specification and further details, focusing on the design and

applied technologies of the MATRYCS-GOVERNANCE security layer, are available in D3.2: End-to-End

Security Framework.

57

 https://www.keycloak.org/

58
 https://istio.io/

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

60

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

4 MATRYCS Data Model

The overall MATRYCS will be applied in 11 LSPs across 9 countries. It covers the whole lifecycle for

building, which is from the product manufacturing to the operation and maintenance, as well as cross-

cutting interests, such as policy making and research. This brings to one of the 5 big data challenges

“Variety”. After analysing the LSP data, the data category of each pilot is listed as the following:

 LSP01 BTC: Building, Device, People, Weather, Energy Consumption

 LSP02 FASADA: Building, Device

 LSP03 VEOLIA: Device

 LSP04 ASM: Building, Device, Transportation, Green Energy

 LSP05 COOPERNICO: Green Energy, Weather, Energy Performance Certificate (EPC)

 LSP06 VEOLIS: Device

 LSP07 ICLEI: Building, Green Energy, Transportation, Energy Consumption,

Questionnaires

 LSP08 GDYNIA: Building, Energy Consumption

 LSP09 EREN: Building, EPC, Energy Consumption

 LSP10 LEIF: Building, Device, Energy Consumption

 LSP11 HOUSING EUROPE: Not defined

Each of the categories can be modelled by reusing the well-established data model. The FIWARE Smart

Data Model with NGSI-LD standard is one of the suitable solutions. The categories, which can be

covered by FIWARE, are Device, Building, Transportation, Green Energy, and Weather.

In the following is the FIWARE specification of each data model in each category:

 Green Energy: PhotovoltaicDevice
59

 Green Energy: PhotovoltaicMeasurement
60

 Building: Building
61

 Building: BuildingOperation
62

 Device: Device
63

 Device: SmartMeteringObservation
64

 Transportation: EVChargingStation
65

59

 https://github.com/smart-data-models/dataModel.GreenEnergy/blob/master/PhotovoltaicDevice/doc/spec.md

60
 https://github.com/smart-data-models/dataModel.GreenEnergy/blob/master/PhotovoltaicMeasurement/doc/spec.md

61
 https://github.com/smart-data-models/dataModel.Building/blob/master/Building/doc/spec.md

62
 https://github.com/smart-data-models/dataModel.Building/blob/master/BuildingOperation/doc/spec.md

63
 https://github.com/smart-data-models/dataModel.Device/blob/master/Device/doc/spec.md

64
 https://github.com/smart-data-models/dataModel.Device/blob/master/SmartMeteringObservation/doc/spec.md

65
 https://github.com/smart-data-models/dataModel.Transportation/blob/master/EVChargingStation/doc/spec.md

https://github.com/smart-data-models/dataModel.Building/blob/master/Building/doc/spec.md
https://github.com/smart-data-models/dataModel.Building/blob/master/BuildingOperation/doc/spec.md
https://github.com/smart-data-models/dataModel.Device/blob/master/Device/doc/spec.md
https://github.com/smart-data-models/dataModel.Device/blob/master/SmartMeteringObservation/doc/spec.md
https://github.com/smart-data-models/dataModel.Transportation/blob/master/EVChargingStation/doc/spec.md

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

61

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

 Weather: WeatherObserved
66

After reusing the FIWARE Smart Data Model, there are still categories Energy Consumption, EPC, and

People, which need to be modelled.

4.1 Vocabularies and Ontologies

4.1.1 Brick schema

Nowadays, buildings are increasingly becoming incubators of data and information. The integration of

intelligence systems, sensor and networking (i.e. Internet of Things - IoT) in buildings is always more

and more common. Even though the amount of data generated by buildings is growing exponentially,

there is still no clear industry-wide standard for using, sharing and exchanging information in a unified

way.

Indeed, some of the day-to-day actions applied in construction, such as energy audits, optimization of

controls or detection of faults in building systems are often slowed down by the lack of

standardization of metadata, making processes much more time-consuming and burdensome (from a

labor point of view) and not reusable in other applications. This problem is generally related to the lack

of semantic interoperability.

The latter is defined by Pritoni et all.
67

 as “the capability of two or more networks, systems, devices,

applications, or components to work together, and to exchange and readily use information securely,

effectively, and with little or no inconvenience to the user”. On the technical side, the interoperability

between devices is achieved using the same communication protocol, on the contrary the semantic

layer is not defined or unambiguously defined, not allowing the development of applications that can

be used in different buildings.

All this shows that it is extremely important to define a univocal semantic layer, which, based on a

standard model, allows interoperability between different services and platforms.

The semantic model is a metadata schema that describes precisely and unambiguously the different

elements that characterize the building and its systems. The peculiarity is that it identifies different

entities by means of a glossary or dictionary and links them to each other using relationships.

Ontologies establish the domain’s concepts and relationships, classes, and attributes.

As written in [67]: “The World Wide Web Consortium (W3C) established standards that created the

Semantic Web, an extension of the World Wide Web aimed to make internet data machine- readable.

Ontologies that comply with W3C standards use triples in the form of subject–predicate–object to encode

knowledge, following the Resource Description Frame- work (RDF) data model. When multiple triples are

put together, they form a directed multigraph. The W3C also provides a set of fundamental languages

that can be leveraged to define ontologies using classes and properties (i.e., Resource Description

Framework Schema or RDFS), description logics (i.e., Web Ontology Language or OWL) and constraints

(i.e., OWL and Shapes Constraint Language or SHACL). Ontologies and Semantic Web technologies have

66

 https://github.com/smart-data-models/dataModel.Weather/blob/master/WeatherObserved/doc/spec.md
67

 Metadata Schemas and Ontologies for Building Energy Applications: A Critical Review and Use Case Analysis – energies- April

2021 DOI: https://www.mdpi.com/1996-1073/14/7/2024

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

62

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

experienced some adoption for internet services, providing interoperability of digitized data, for example,

between search engines, web crawlers, and other web-based software”

On the building domain the ontologies developed and under development are summarized in the

following schema (see Table 13).

Table 13: Metadata schema as resulting of review process of existing applications

Phase of the Building Life

Cycle
Group

Schemas (Year Created)

Design and energy modelling -

 Industry Foundation Classes (IFC)

 Green Building XML (gbXML)

 ifcOWL

 Tubes

 SimModel Ontology

 Energy-ADE

Operations

Sensor network,
Internet of things
(IoT) and smart
homes

 Semantic Sensor Network/Sensor,
Observation, Sample and Actuator
(SSN/SOSA)

 Web Thing Model

 OneM2M
68

 BaseOntology’s

 One Data Model (oneDM)

 Smart Energy Aware Systems

 ThinkHome

 Building Ontology for Ambient
Intelligence

 DogOnt

 Ontology of Smart Building

 Smart Application REFerence
(SAREF)

Operations

Commercial
building,
automation and
monitoring

 Project Haystack

 BASont

 Haystack Tagging Ontology (HTO)

 Brick Schema

 Google Digital Building Ontology

 Semantic BMS Ontology

 CTRLont

 Green Button

 RealEstateCore (REC)

 Building Topology Ontology (BOT)

 Building Automation and Control
Systems (BACs)

 Knowledge Model for City
(KM4City)

 EM-KPI Ontology

68

 https://en.wikipedia.org/wiki/OneM2M

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

63

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Phase of the Building Life

Cycle
Group

Schemas (Year Created)

Operations
Grid-interactive
efficient building
(GEB) applications

 Facilty Smart Grid Information
Model

 RESPOND

Operations
Occupants and
behaviour

 DNAs Framework (obXML)

 Occupancy Profile (OP) Ontology

 Onto-SB: Human Profile Ontology
for Energy Efficiency in Smart
Building

 OnCom

Operations
Asset management
and audits

 Building Energy Data Exchange
Specifications (BEDES)

 Virtual Building Information
Systems (VBIS)

 Ontology of Property Management
(OPM)

The core concept of an ontology applied on a building domain is defined in the following table.

Table 14: Main core concepts of building ontology

Category Concept Proprieties Relationship to/from

Zones and Spaces

Space
Function

Floor Area

Composed of spaces

Adjacent spaces

Zone Floor area

Overlaps one or more
spaces

Overlaps other zones

Building floor Orientation Composed of spaces

Envelope Envelope element

Type of envelope
element(wall, roof,
floor, window)

Envelop characteristics
(e.g., thermal
resistance, storage,
solar seat gain
coefficient)

Part of space

Building System and
Equipment

System Type of system Composed of
components

Equipment

Type of equipment

Rated power draw

Rated efficiency

Remaining lifespan

Serves zone

Located in space

Metered by meter

Connected to
equipment

HVAC equipment Rated capacity

Lighting equipment Rated(max.) luminous Serves zone/space

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

64

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Category Concept Proprieties Relationship to/from

flux

Minimum relative light
output

Rated (max.) power

Correlated color
temperature

Spaectral power
distribution

Rated Input voltage

Rated (max.) input
current

Located in space

Metered by
(internal/external)

Meter Connected to
electrical

Junction box or other
equipment

Other end use Type of end-use

Component Type of component

Part of system

Located in space

Connected to
component

Control Devices

Control device Has points

Control point

Input/Output Type

Physical/Virtual type

Type of virtual point
(setpoints, command,
alarm)

Unit of measure

Control interval

Linked to
sensor/actuator

Linked to time series
data

Control strategy Schedule Event

Has inputs

Has outputs

Linked to sensor

Linked to actuator

Linked to time series
data

Sensor/Actuator

Sensor

Type of sensor

Unit of measure

Measurement Interval

Reporting Interval

Senses/Measures point

Senses/Measures
equipment

Aggregates
measurements

Actuator
Unit of measure

Actuation interval

Actuates point

Actuates equipment

Integrates/Prioritizes
actuations

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

65

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

In this 1
st
 technology release, preliminary test with brickschema ontology was carried out with the aim

to generate the data model for the building case study of LSP2 (FASADA).

Brick is a metadata scheme that takes from the Haystack project the use of tags to preserve the

flexibility and ease of use of annotating metadata. Brick unlike Haystack schema places restrictions to

prohibit arbitrary tag combinations and relationships. For example, the unit for temperature to be

chosen can be only Fahrenheit or Celsius or give an error if sensor and set point occurring together in

a tags combination for a data point.

Brick introduces the concept of tagset that group together relevant tags to represent an entity. They

are:

 Points are physical or virtual entities that generate time-series data. Physical points

include actual sensors and setpoints in a building, whereas virtual points encompass

synthetic data streams that are the result of some process which may operate on other

timeseries data, e.g. average floor temperature sensor.

 Equipment: Physical devices designed for specific tasks controlled by points

belonging to it. E.g., light, fan, Air Handling Unit (AHU).

 Location: Areas in buildings with various granularities. E.g. room, floor.

 Resource: Physical resource or materials that are controlled by equipment and

measured by points. An AHU controls resources such as water and air, to provide

conditioned air to its terminal units.

Together with these entities, Brick defines a minimal set of relationships that capture the connection

between them. A Brick building model can be visualize using the Resource Description Framework

(RDF) which represents graph-based knowledge as tuples of (subject, predicate, object) termed triples.

Unlike the other languages for the building metadata scheme, Brick is distinguished for:

 Completeness: The current version of Brick covers the 98% of the vocabularies found

in six buildings in different countries.

 Vocabulary Extensibility: The structure of Tags/TagSets allow easy extensions of

TagSets for newly discovered domains and devices while allowing inferences of the

unknown TagSets with Tags.

 Usability: Brick represents an entity as a whole instead of annotating it. It promotes

consistent usages by different actors. Furthermore, its hierarchical TagSets structure

allows user queries more generally applicable across different systems.

 Expressiveness: Brick standardizes canonical and usable relation-ships, which can be

easily extended with further specifications.

 Schema Interoperability: Using RDF enables straightforward integration of Brick with

other ontologies targeting different domains or aspects.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

66

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Figure 29: Example of Brick Schema

The relationship support by Brick and updated by Brick+ are shown in the following table:

Table 15: Relationship and definition for brick and brick plus schema

Relationship Definition

hasLocation Subject is physically located in the object entity

feeds Subject conveys some media to the object entity in the context of some

sequential process

hasPoint Subject has a monitoring, sensing or control point given by the object entity

hasPart Subject is composed – logically or physically – in part by the object entity

Measures Subject measures a quantity or substance given by the object entity

Regulates Subject informs or performs the regulation of the substance given by the

object entity

hasOutputSubstance Subject produces or exports the object entity as a product of its internal

process

hasInputSubstance Subject receives the object entity to conduct its internal process

More information related to these projects are available at the following link

https://brickschema.org/#home

Regarding the application in MATRYCS, one building has been modelled using the brick schema. The

building is a kindergarten located in the city of Gdynia. Using a BIM file, an IFC file was generated with

which it was possible to generate an RDF (Resource Description Framework) file of type turtle (.ttl)

containing the most important geometric information of the building.

Only two comfort sensors, monitoring the thermal comfort and Indoor air quality in two rooms of the

https://brickschema.org/#home

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

67

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

building, were installed. These sensors have been modelled separately. as this information was not

present in the IFC file.

A python script was generated (using a starting work of G.Fierro
69

), to allow the automatic translation

of some elements from IFC files to brickschema. This work is still under development aiming to

improve the existing library including much more information coming from the .ifc file.

The brickschema model of the kindergarten together with the python files, used to generate the model

are available in the Github MATRYCS repository
70

.

The file will then be integrated into the MATRYCS infrastructure through the use of the Neo4j

graphical database (using the neosemantics plugin).

4.1.2 SAREF

The Smart Applications REFerence (SAREF)
71

 is one of the well-established Ontologies, which is

intended to cover the various actors in the Internet of Things (IoT).

Figure 30 shows an overview of the SAREF. The main classes are contained in the box. The connection

between each class is the relationship
72

.

Figure 30: Overview of the SAREF ontology

SAREF4BLDG is an extension of SAREF, which is created based on the Industry Foundation Classes

standard for building information
73

. The goal of SAREF4BLDG is intended to improve the

interoperability among different phases of the building life cycle. The overview of SAREF4BLDG is

depicted in Figure 31. As can be observed, saref:device is reused from SAREF. The class geo:SpatialThing

is from the geo ontology, which proposed the conceptualization for location. This extension can be

reused in MATRYCS to build an ontology to cover the whole life cycle of building.

69

 https://github.com/gtfierro/brick-ifc-convert

70
 https://github.com/MATRYCS

71
 https://saref.etsi.org

72
 https://www.etsi.org/deliver/etsi_ts/103200_103299/103264/03.01.01_60/ts_103264v030101p.pdf

73
 https://www.etsi.org/deliver/etsi_ts/103400_103499/10341003/01.01.02_60/ts_10341003v010102p.pdf

https://www.etsi.org/deliver/etsi_ts/103200_103299/103264/03.01.01_60/ts_103264v030101p.pdf

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

68

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Figure 31: General overview of the top levels of the SAREF4BLDG

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

69

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

5 MATRYCS–GOVERNANCE Integration at M11

5.1 Case study LSP1 and LSP5

In this section a general description of the LSP1 (BTC: BUILDING OPERATION-Facility and resources

fingerprinting for efficiency and optimal balancing of energy vectors) and LSP5 (COOPERNICO:

ENERGY COMMUNITIES-services for the better management of self-production systems) case studies

can be found. For more information, please check “D2.1 - State-of-the-art analysis and Big Data Value

Chain”.

LSP1: BUILDING OPERATION: Facility and Resources Fingerprinting for Efficiency and Optimal

Balancing of Energy Vectors

LSP1 focuses on the building level and is classified under the MATRYCS-PERFORMANCE pilot category.

It is led by BTC (Slovenia) and contemplates three facilities.

The BTC d.d. is one of the leading commercial property development companies in the Central and

Southeastern Europe. The company is managing a range of business, commercial and recreational,

entertainment and cultural activities with wide range of logistics services, covering an area of approx.

475.000 m
2.
. BTC also runs a logistic service business unit, which holds the leading market position in

FMCG logistics in Slovenia. It also provides first-class property management services for the largest

Slovenian clients in the commercial real estate service sector.

LSP1 includes three BTC facilities: the Business tower BTC City, the Atlantis water park and the Logistics

center. All facilities have different control systems.

The Business tower BTC City is entirely occupied by tenants of business premises. It has two different

BMS controlling separately old and new equipment for temperature control. Besides there is an EMS

collecting data from electricity meters and form calorimeter in the heating sub-station. The access

control system is also installed in the building and it is used to control and monitor access to the

premises and record working time of employee. However there is no links between BMS, EMS and

access control data.

The Atlantis Water Park consists of indoor and outdoor pools, various saunas and water attractions. It

has also a separate BMS, EMS and access control system for visitors. Also here there are no links

between BMS, EMS and access control data.

The Logistics center is the third element of the BTC d.d. that is included in the MATRYCS project, and

consists of warehouses and cold storages. Unfortunately, only cold storages are equipped with BMS,

for operation of refrigeration units and for control of temperature in the refrigeration chambers. The

area is partially covered by EM that monitors electricity consumption in warehouses and cold storages.

Also, a part of warehouse heating and water consumption is included in the EMS. Access control

system is responsible for monitoring and control of the access in the warehouses. There is also a

warehouse management system (WMS), responsible for the planning and management of the

warehouse occupancy. There are no links between BMS, EMS, WMS and access control data.

The main objectives of the large – scale pilot are the following:

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

70

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

 Improving the operation and maintenance of the pilots tacking into account reliable

analysis.

 Upgrade the system of existing and development of new energy performance

indicators (KPI)

 Expose potentials for flexibility and energy efficiency to various energy service

providers or utilities.

Within this first release, UC01_01- Action plans for preventive maintenance will be initiated, in order to

complete a proof of concept. In this use case, the user will be able to select actions plans and closely

monitor the implementation to increase reliability and efficiency of the systems. Two services are

involved here: s1.2 (BAC services) and s1.4 (TBMs).

In the case of service s1.4, TBM1 will be deployed (Identification of frozen sensors). This first

implementation will be done based on the data provided by BTC pilot about the air conditioning

systems within Atlantis Water Park, which is located in Slovenia. The data provided contains

information on 43 temperature sensors, coming from 14 air conditioning systems (these temperature

variables refer to blow in temperature, exhaust air temperature, and fresh air temperature, mainly).

Small differences can be found in variables depending on the specific air conditioning system.

LSP5: ENERGY COMMUNITIES: Services for the better management of self-production systems

LSP 5 focuses on the building and district level and is classified under the MATRYCS-PERFORMANCE

pilot category. It is led by COOPERNICO (Portugal) and will involve a vast number of consumers.

In particular, LSP5 will involve 850 citizens, of which at least half will be Coopérnico’s members and a

third prosumers. This pilot will aim to collect all available information (such as EPCs, consumption and

production profiles, weather data etc.) to provide tools that can help small consumers, citizens and

SMEs, improve their energy efficiency standards and better manage their energy assets.

This LSP proposes the use of data coming from smart meters of the members collecting their energy

production and matching it to their real electricity consumption. This information will be enriched with

other data, for example: the type of building, year of construction and location. This data will be the

basis to design a service where advice is given on how to better use the energy produced, consumed

and what improvements can be done to the building itself to improve their energy efficiency. Besides,

this service could be used by other members who only consume electricity from the grid, offering

useful information and giving advises on how they can improve their building or energy use.

Besides, LSP5 will explore solutions to foster collaborations between local energy consumers to

support the creation of new Renewable Energy Communities (RECs) and collective self-consumption

projects in alignment with the on-going transposition of the REDII directives.

Therefore, the main objectives of the pilot are:

 Help citizens identify ways to save energy by analysing their consumption pattern

 Increase "efficiency" of currently deployed energy assets (e.g. PV systems and EVs) by

optimizing local production and consumption

 Increase citizen-owned RES capacity installed

 Map local electricity consumption to identify citizens in energy poverty condition

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

71

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Within this first release, work will begin on UC05_02- Identification of PV performance issues, in order

to complete a proof of concept. In this use case, the user will be able to identify when his PV system is

not performing properly. Two services are involved here: s1.1 (Energy prediction) and s1.4 (TBMs).

Information coming from Coopernico Solar’s projects has been explored, and data from Adega

Palmela Cooperative has been analysed and used to work on this first release. Two kinds of datasets

have been found: one type only provides information about hourly production and CO2 emissions of

the PV; the second group provides information closer to the involved equipment, the number of

inverters and registered values for representative information (voltage, intensity, power, temperature

and energy produced).

5.1.1 Data Acquisition

Preliminary work was carried out together with BTC (LSP1) and Coopernico (LSP5) pilots to define both

the data to be integrated and the communication interfaces. For privacy and security reasons, both

BTC and Coopernico pilots have opted to share their datasets via the SFTP protocol. In this regard, two

folders have been created for both LSP1 and LSP5, on the SFTP Server configured in the

Interoperability Service Module. The access to their own staging area has been guaranteed through

user credentials provided to the pilots. Dedicated data connectors have been created within the

Interoperability Service Module in order to integrate the datasets shared in the SFTP Server to be

processed by the Data Pre-Processing & Semantic Enrichment Layer (see Figure 32).

Figure 32: LSP1 and LSP5 data acquisition

5.1.1.1 LSP1

For the LSP1 case study, a data connector microservice (NiFi macro process group) has been

configured within the Interoperability Service Module to integrate the following datasets provided by

BTC pilot:

 Cold Storage – Electricity

 BTC Tower – Electricity

 BTC Tower – Heating

 Cold Storage – Heating

 Cold Storage - Solar Power Generation

 Water Park – Electricity

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

72

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

As showed in the Figure 33, LSP1 data are sent by BTC in the SFTP server and then a set of NiFi

processors have been implemented in order to integrate LSP1 data from the SFTP staging area, to

process it (data cleansing, data curation, data modelling) with a python script defined in Data Pre-

processing & Semantic Enrichment layer (section 5.1.2) and to publish it on the Kafka instance

(Streaming module).

Figure 33: LSP1 data connector

5.1.1.2 LSP5

For the LSP5 case study, a data connector microservice (NiFi macro process group) has been

configured within the Interoperability Service Module to integrate the following datasets provided by

Coopernico pilot:

 Coopérnico solar projects production (Palmela data).

As showed in the Figure 34, LSP5 data are sent by Coopernico in the SFTP server and then a set of NIFI

processors have been implemented in order to integrate LSP5 data from the SFTP staging area, to

process it (data cleansing, data curation, data modelling) with a python script defined in Data Pre-

processing & Semantic Enrichment layer (section 5.1.2) and to publish it on the Kafka instance

(Streaming module).

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

73

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Figure 34: LSP5 data connector

5.1.2 Data processing and modelling

The LSP1 (BTC) data contains information about different meters in different buildings. Therefore, the

common data model needs to cover the information about the meter itself, the time series data and

building related data. After reusing the FIWARE Smart Data Model, the building related data is

modified into two entities: Building and Building Operation.

The LSP5 (Coopernico) data contains only information about the photovoltaic device. The Photovoltaic

Device entity is based on FIWARE PhotovoltaicDevice
74

data model. The PhotovoltaicDevice is still

under development, which does not have an official specification.

The FIWARE Building entity is a human build structure where different activities occur. The properties
75

are described as following:

 address: The mailing address

 alternateName: An alternative name for this item

 areaServed: The geographic area where a service or offered item is provided

74

 https://github.com/smart-data-models/dataModel.Energy/blob/master/PhotovoltaicDevice_incubated
75

 https://github.com/smart-data-models/dataModel.Building/blob/master/Building/doc/spec.md

https://github.com/smart-data-models/dataModel.Building/blob/master/Building/doc/spec.md

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

74

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

 category: Category of the building. Enum:'apartments, bakehouse, barn, bridge,

bungalow, bunker, cathedral, cabin, carport, chapel, church, civic, commercial,

conservatory, construction, cowshed, detached, digester, dormitory, farm,

farm_auxiliary, garage, garages, garbage_shed, grandstand, greenhouse, hangar,

hospital, hotel, house, houseboat, hut, industrial, kindergarten, kiosk, mosque, office,

parking, pavilion, public, residential, retail, riding_hall, roof, ruins, school, service, shed,

shrine, stable, stadium, static_caravan, sty, synagogue, temple, terrace, train_station,

transformer_tower, transportation, university, warehouse, water_tower'

 collapseRisk: Probability of total collapse of the building.

 containedInPlace: The place which contained the building

 dataProvider: A sequence of characters identifying the provider of the harmonised

data entity.

 dateCreated: Entity creation timestamp. This will usually be allocated by the storage

platform.

 dateModified: Timestamp of the last modification of the entity. This will usually be

allocated by the storage platform.

 description: A description of this item

 floorsAboveGround: Floors above the ground level

 floorsBelowGround: Floors below the ground level

 id: Unique identifier of the entity

 location: Geojson reference to the item. It can be Point, LineString, Polygon, MultiPoint,

MultiLineString or MultiPolygon

 name: The name of this item.

 occupier: Person or entity using the building

 openingHours: Opening hours of this building.

 owner: A List containing a JSON encoded sequence of characters referencing the

unique Ids of the owner(s)

 peopleCapacity: Allowed people present at the building

 peopleOccupancy: People present at the building

 refMap: Reference to the map containing the building

 seeAlso: list of uri pointing to additional resources about the item

 source: A sequence of characters giving the original source of the entity data as a URL.

Recommended to be the fully qualified domain name of the source provider, or the

URL to the source object.

 type: NGSI Entity type

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

75

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

The FIWARE Building Operation
76

 entity describes a generic operation applied to the referenced

building. The building operation contains dynamic data reported by or associated with a building or

operations to the building.

The data model has the following properties:

 alternateName: An alternative name for this item

 dataProvider: A sequence of characters identifying the provider of the harmonised

data entity.

 dateCreated: Entity creation timestamp. This will usually be allocated by the storage

platform.

 dateFinished: The actual end date for the operation.

 dateModified: Timestamp of the last modification of the entity. This will usually be

allocated by the storage platform.

 dateStarted: The actual start date for the operation.

 description: A description of this item

 endDate: The planned end date for the operation.

 id: Unique identifier of the entity

 name: The name of this item.

 operationSequence: Id of the sequence of the operation when available

 operationType: Type of the operation on the building

 owner: A List containing a JSON encoded sequence of characters referencing the

unique Ids of the owner(s)

 refBuilding: Building reference where the operation is performed.

 refOperator: Reference to the Operator doing the operation on the building.

 refRelatedBuildingOperation: Reference to other building operations when in sequence

 refRelatedDeviceOperation: Devices related to the current operation. A list of

references to an entity of type Device.

 result: Result of the building operation. Enum:'ok, aborted'

 seeAlso: list of uri pointing to additional resources about the item

 source: A sequence of characters giving the original source of the entity data as a URL.

Recommended to be the fully qualified domain name of the source provider, or the

URL to the source object.

 startDate: The planned start date for the operation.

 status: Status of the operation. Enum:'cancelled, finished, ongoing, planned, scheduled'

 type: It has to be BuildingOperation

76

 https://github.com/smart-data-models/dataModel.Building/blob/master/BuildingOperation/doc/spec.md

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

76

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Those properties provide a harmonized description of a building. Depends on different use cases, the

properties are variant. The mandatory properties are id, type. The FIWARE smart data model has been

developed in relation to the FIWARE NGSI standard protocol. Therefore, the part of design principles,

which focus on the NGSI protocol, will be included in MATRYCS data model.

The data model of LSP1 is described in Figure 35. The data model of LSP5 is shown in Figure 36. The

development approach is discussed in section 3.3.2.2, which is implemented as below:

 Determine the domain and scope of the data model

In this case study, we only focus on the LSP1 and LSP5 data. As mentioned before, the data is

mainly related to the building and photovoltaic domain.

 Consider reusing existing schemas

The building and photovoltaic domain specific data model in FIWARE Smart Data Model are

reused.

 Define the common entity and entity hierarchy, which should cover all the different LSP data

Based on the Smart Data Model, LSP1 dataset is defined in four entities: Building, Building

Operation, Device, and Time Series Data. The Building Operation entity contains the reference

to the Building entity and the related Device entity. The Time Series Data is related to a single

Device entity.

LSP5 dataset is covered by Photovoltaic Device entity, which is a sub-class of Device.

 Define the common property in the defined class

Right now, the common property is still under development. The mandatory properties are

integrated. In Building entity are the id, type, category and address. In Building Operation are

the id, type and refBuilding. In other entities are the id relevant.

 Map each pilot data to the Common Data Model

The last step is to map the LSP1 and LSP5 data to the defined Data Model, which is developed

by applying a Python dictionary. The python dictionary maps the LSP dataset to the Common

Data Model though key value pairs. The dictionary is executed by the Python script and

integrated in Apache NiFi.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

77

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Figure 35: LSP01 BTC data model

Figure 36: LSP05 Coopernico data model

Additionally, there are different timestamps used in LSP1 and LSP5 datasets. Therefore, a unique time

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

78

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

format is necessary for Common Data Model. The Epoch time
77

 is a time format for describing a point

in time. It is the number of seconds that have elapsed since the Unix epoch, which is 00:00:00 UTC on 1

January 1970. Applying the Epoch time provides the advantage of easily data storage and data

manipulate than the conventional data format. It can be easily transformed by using the standard

language (e.g. Python, C, Java, etc.). The Epoch time can be found at the bottom of Figure 35

“dataObserved” field and Figure 36 “Timestamp” field.

As mention in section 3.3, the raw data will be processed with python scripts deployed in Apache NiFi

instance (Interoperability service module). The DATASET_ORDER_DICT in Table 16 is used to provide the

information about the path of the raw data and the mapping to the dataset_columns_dict. The

dataset_columns_dict describe the mapping of the original column name to the Matrycs data model.

Currently each LSP has a python script, which take response for all task about pre-processing and data

harmonization.

Table 16: DATASET_ORDER_DICT in python script

DATASET_ORDER_DICT

[

 {

 'msg':'BTC_MEASUREMENT',

 'path':'DATA/BTC_data_20210412.csv',

 'dataset_columns_dict':BTC_ENERGY_CONSUMPTION,

 'separator':';'

 },

 {

 'msg':'BTC_DEVICE',

 'path':'DATA/BTC_data_20210412.csv',

 'dataset_columns_dict':BTC_DEVICE,

 'separator':';'

 },

 {

 'msg':'BTC_PEOPLE_MEASURED',

 'path':'DATA/BTC_data_20210412.csv',

 'dataset_columns_dict':BTC_PEOPLE_MEASURED,

 'separator':';'

 }

]

As Output for this script, the harmonized data model is published in JSON format to the Kafka instance

of the Streaming module (section 3.4). Data storage and Reasoning engine will get the data model

through Kafka topic.

77

 https://en.wikipedia.org/wiki/Unix_time

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

79

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

5.1.3 Data Storage and Reasoning Engine

5.1.3.1 Data Storage

Data Storage integrates into the MATRYCS-GOVERNANCE layer using a dedicated microservice. The

microservice, written in Golang, implements an input Kafka consumer connection towards the

Streaming module for retrieving JSON formatted LSP data in a harmonized data model (see section

5.1.2) on specific Kafka topics. The implementation of Data Storage Golang Kafka consumer connection

using kafka-go
78

 library can be seen in Table 17. The retrieved data are stored on a Linux filesystem (i.e.,

temporary storage area) using newline delimited JSON (NDJSON) format for usage by the Reasoning

Engine and later historical raw data access. Additionally, Data Storage provides a real-time big data

distributed database ScyllaDB for storing and retrieving custom data produced by other MATRYCS-

GOVERNANCE components. ScyllaDB will be installed in a cloud environment and accessible via

ScyllaCQL Drivers
79

. At the time of writing this deliverable, additional experimentation with MongoDB

is being performed targeting higher performance optimization.

Table 17: Data Storage Golang Kafka consumer
78

r := kafka.NewReader(kafka.ReaderConfig{

 Brokers: []string{"localhost:9092"},

 Topic: "stream1-MATRYCS",

 Partition: 0,

})

for {

 m, err := r.ReadMessage(context.Background())

 if err != nil {

 break

 }

 fmt.Printf("message at offset %d: %s = %s\n", m.Offset, string(m.Key), string(m.Value))

}

if err := r.Close(); err != nil {

 log.Fatal("failed to close reader:", err)

}

78

 https://github.com/segmentio/kafka-go

79
https://docs.scylladb.com/using-scylla/drivers/cql-drivers/

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

80

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

5.1.3.1.1 Case LSP1

Messages produced by the Streaming module and received via Data Storage’s Kafka consumer for

LSP1 are written on a Linux filesystem using NDJSON format. A sample of a file for LSP1 according to a

harmonized data model (see section 5.1.2) can be seen in Table 18.

Table 18: Staging area file for LSP1

{ “id”: “billing meter (network)”, “value”: 99.8, “dateObserved”: 1618185600 }

{ “id”: “billing meter (network)”, “value”: 100.2, “dateObserved”: 1618189200 }

{ “id”: “billing meter (network)”, “value”: 102.0, “dateObserved”: 1618192800 }

{ “id”: “billing meter (network)”, “value”: 102.0, “dateObserved”: 1618196400 }

{ “id”: “billing meter (network)”, “value”: 102.1, “dateObserved”: 1618200000 }

…

5.1.3.1.2 Case LSP5

Messages produced by the Streaming module and received via Data Storage’s Kafka consumer for

LSP5 are written on a Linux filesystem using NDJSON format. A sample of a file for LSP5 according to a

harmonized data model (see section 5.1.2) can be seen in Table 19.

Table 19: Staging area file for LSP5

{ “id”: “05photovoltaicDevice”, “Timestamp”: 1580605200, “production”: “0”, “specificRate”: “0”, co2Reduced”: “ “ }

{ “id”: “05photovoltaicDevice”, “Timestamp”: 1580608800, “production”: “0”, “specificRate”: “0”, co2Reduced”: “ “ }

{ “id”: “05photovoltaicDevice”, “Timestamp”: 1580612400, “production”: “0”, “specificRate”: “0”, co2Reduced”: “ “ }

{ “id”: “05photovoltaicDevice”, “Timestamp”: 1580616000, “production”: “0”, “specificRate”: “0”, co2Reduced”: “ “ }

{ “id”: “05photovoltaicDevice”, “Timestamp”: 1580619600, “production”: “0”, “specificRate”: “0”, co2Reduced”: “ “ }

…

5.1.3.2 Reasoning Engine

5.1.3.2.1 Case LSP1

Reasoning Engine’s Kafka Consumer receives the following payload for the produced dataset (LSP1 -

BTC).

Table 20: LSP1 Reasoning Engine payload

{

 "id": "building-btc-tower",

 "type": "Building",

 “ENERGY_SOURCE'”: “electricity”,

 “MEASURE”: ”14
th

 Floor”

 "TIMESTAMP": 12343455,

 " LOCATION ":”14
th

 Floor”,

 "UNIT_OF_MEASURE": "KWH",

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

81

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

 “value”: 0.784

}

Using the following Cypher code along with Python Neo4j Client the incoming data are imported to

the graph database as entities and collections and the entities created are “BTCInstance”,

“EnergySource”, “Part” and “Consumption” and the connection that relates these entities are

“has_part”, “has_energy_source” .

Table 21: LSP1 import script to Reasoning Engine

 UNWIND $batch_list AS line

 WITH line

MERGE (btc_tower:BTCInstance {

 id: line[‘id’],

 type: line['type’]

})

MERGE (energy_source:EnergySource {

 source: line['ENERGY_SOURCE']

})

MERGE (part:Part {

 name: line['MEASURE']

})

CREATE (cons:Consumption {

 timestamp: line['TIMESTAMP'],

 location: line['LOCATION'],

 unit_of_measure: line['UNIT_OF_MEASURE'],

 value: toFloat(line['VALUE'])

})

MERGE (btc_tower)-[:has_part]->(part)

CREATE (part)-[:has_consumption]->(cons)

CREATE (cons)-[:has_energy_source]->(energy_source)

The following figure demonstrates how the BTC data are stored to the graph database

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

82

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Figure 37: Stored LSP1 data on GraphDB

5.1.3.2.2 Case LSP5

Reasoning Engine’s Kafka consumer receives the following payload for the produced COOPERNICO

dataset (LSP5).

Table 22: LSP5 Reasoning Engine payload

{

'id': '05photovoltaicDevice',

'Timestamp': 1615334400,

'production': '0',

'specificRate': '0',

'co2Reduced': ' '

}

Using the following Cypher code along with Python Neo4j Client the incoming data are imported to

the graph database as entities and connections. More specifically the data importers create two

entities, the entity “PhotoVoltaicDevice” and the entity “DeviceMeasurement”, and one connection that

is called “has_measurement” that relates these two entities.

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

83

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

Table 23: LSP5 import script to Reasoning Engine

UNWIND $batch_list AS line

 WITH line

 MERGE (pd:PhotoVoltaicDevice {device_id: line['id']})

 CREATE (device_data:DeviceData {

 Timestamp: line['Timestamp'],

 production: coalesce(toFloat(line['production']), 0.0),

 specificRate: coalesce(toFloat(line['specificRate']), 0.0),

 co2Reduced: coalesce(toFloat(line['co2Reduced']), 0.0)

 })

 CREATE (pd)-[:has_measurement]->(device_data)

The following figure demonstrates the data after being stored and persisted to the Neo4j Graph

database. The structure of entities and connections are suitable for executing Cypher queries and for

extracting patterns from data.

Figure 38: LSP5 data stored in the GraphDB

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

84

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

5.1.4 Data Access Layer

5.1.4.1 Data Storage & High Performance Distributed Query Engine

Generally, access to the Data Storage and the related staging area, ScyllaDB and other data inside the

MATRYCS ecosystem will be provided using the High Performance Distributed Query Engine based on

Presto. Additionally, the data in the staging area may be directly accessed by applications residing on

and having access to the Data Storage cloud deployment file system. Presto queries can be run using

Presto Client REST API or via a Presto CLI. A query is sent to the Presto Client REST API using an HTTP

POST request to the /v1/statement/ endpoint with a SQL query string inside POST body. The query

string is based on Presto SQL query language
80

. An example query submission using curl is available in

Table 24. The X-Presto-User header containing the session user must be supplied with every request.

Table 24: Example Presto query submission

curl --data "show session" http://localhost:8080/v1/statement/ --header "X-Presto-User: matrycs"

5.1.4.2 Reasoning Engine

For accessing data from the graph database we have developed using the Python’s Flask REST

Framework a Rest API for submitting Cypher queries to the graph database. In the table below the curl

request used for accessing the data.

Table 25: Reasoning Engine Rest API

curl --location --request POST 'http://reasoning_engine:5000/query' \

--header 'Content-Type: text/plain' \

--data-raw '${query}'

80

 https://prestodb.io/docs/current/sql.html

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

85

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

6 MATRYCS–GOVERNANCE: Final considerations

and next steps

This 1
st
 technology release focused on the preliminary identification and evaluation of the envisaged

technological solutions for the MATRYCS-GOVERNANCE layer with limited data and scenarios. The

main functionalities of the MATRYCS-GOVERNANCE components have been defined and implemented

with an on-premises approach, as well as the interactions between them and the preliminary test on

MATRYCS-GOVERNANCE data flows. The work done in this first release has created a valuable baseline

for the next activities that will be included in the 2
nd

 technology release.

Below, the future activities for MATRYCS-GOVERNANCE layer are listed:

MATRYCS-GOVERNANCE cloud infrastructure

 Deployment of the MATRYCS-GOVERNANCE layer components in a common

MATRYCS cloud infrastructure that will be identified at project level. At the time of

writing, the MATRYCS project is evaluating several research cloud infrastructures (EGI

FedCloud, GAIA-X, FIWARE Lab) as well as private cloud services (AWS, Azure, Google

Cloud Provider).

Trusted data sharing (DLT/Blockchain)

 Implementation of a hybrid private blockchain platform based on Ethereum

technology.

 Definition and implementation of smart contracts to enable trusted data sharing

mechanisms within the MATRYCS-GOVERNANCE layer.

Interoperability Service module

 Implementation of new data connectors for full integration of MATRYCS data provided

by the LSPs as well as by open data Hubs and/or external services/repositories.

Data pre-processing & semantic enrichment

 Definition of the MATRYCS common data model.

 Implementation data pre-processing and modelling scripts.

 Integration activities with the MATRYCS Streaming module.

Streaming module

 Definition new data streaming flows according with the new data integrated.

High distributed query Engine and Data Storage

 Evaluating MongoDB as new technological solution for the data storage to improve

performance aspects.

 Integration activities with the MATRYCS Streaming module (new MATRYCS datasets).

Reasoning engine

 Integration activities with the MATRYCS Streaming module (new MATRYCS datasets).

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

86

D3.1 MATRYCS-GOVERNANCE (1
st
 technology release)

End-to-End security framework

 Implementation of the End-to-End security framework.

 Integration activities with all MATRYCS-GOVERNANCE components.

The 2
nd

technology release of the MATRYCS-GOVERNANCE layer will be described in detail in D3.3 -

 MATRYCS-GOVERNANCE (2
nd

 technology release) (M22).

	1 Introduction
	1.1 Purpose of the document
	1.2 Structure of the document

	2 MATRYCS-GOVERNANCE architecture
	2.1 Overall MATRYCS-GOVERNANCE architecture
	2.2 MATRYCS-GOVERNANCE Building Blocks
	2.2.1 Interoperability Service Module
	2.2.2 Data pre-processing and semantic enrichment
	2.2.3 Streaming module
	2.2.4 Data Storage
	2.2.5 High Performance Distributed Query Engine
	2.2.6 Reasoning Engine
	2.2.7 Trusted Data Sharing (DLT/Blockchain)
	2.2.8 End-to-End Security framework

	3 MATRYCS Data Governance solution
	3.1 Overview Data Governance solution
	3.2 Interoperability Service Module
	3.2.1 Interoperability implementation description
	3.2.2 Interoperability Data Connectors
	3.2.3 Technological components
	3.2.3.1 Overall description
	3.2.3.2 Deployment approach

	3.2.4 Interaction with other Data Governance components

	3.3 Data pre-processing and semantic enrichment
	3.3.1 Data pre-processing and semantic enrichment implementation description
	3.3.2 Technological components
	3.3.2.1 Overall description
	3.3.2.2 Deployment approach

	3.3.3 Interaction with other Data Governance components

	3.4 Streaming module
	3.4.1 Streaming module implementation description
	3.4.2 Technological components
	3.4.2.1 Overall description
	3.4.2.2 Deployment approach

	3.4.3 Interaction with other Data Governance components

	3.5 Data Storage
	3.5.1 Data Storage implementation description
	3.5.2 Technological components
	3.5.2.1 Overall description
	3.5.2.2 Deployment approach

	3.5.3 Interaction with other Data Governance components

	3.6 Reasoning Engine
	3.6.1 Reasoning Engine implementation description
	3.6.2 Technological components
	3.6.2.1 Overall description
	3.6.2.2 Deployment approach

	3.6.3 Interaction with other Data Governance components

	3.7 High Performance Distributed Query Engine
	3.7.1 High Performance Distributed Query Engine implementation description
	3.7.2 Technological components
	3.7.2.1 Overall description
	3.7.2.2 Deployment approach

	3.7.3 Interaction with other Data Governance components

	3.8 Trusted Data Sharing (DLT/Blockchain)
	3.8.1 Trusted Data Sharing implementation description
	3.8.2 Technological components
	3.8.2.1 Overall description
	3.8.2.2 Deployment approach

	3.8.3 Interaction with other Data Governance components

	3.9 End-to-End Security framework

	4 MATRYCS Data Model
	4.1 Vocabularies and Ontologies
	4.1.1 Brick schema
	4.1.2 SAREF

	5 MATRYCS–GOVERNANCE Integration at M11
	5.1 Case study LSP1 and LSP5
	5.1.1 Data Acquisition
	5.1.1.1 LSP1
	5.1.1.2 LSP5

	5.1.2 Data processing and modelling
	5.1.3 Data Storage and Reasoning Engine
	5.1.3.1 Data Storage
	5.1.3.1.1 Case LSP1
	5.1.3.1.2 Case LSP5

	5.1.3.2 Reasoning Engine
	5.1.3.2.1 Case LSP1
	5.1.3.2.2 Case LSP5

	5.1.4 Data Access Layer
	5.1.4.1 Data Storage & High Performance Distributed Query Engine
	5.1.4.2 Reasoning Engine

	6 MATRYCS–GOVERNANCE: Final considerations and next steps

